3D Bioplotter Research Papers
3D ink-extrusion of elemental powders for high-compliance β-Ti microlattices
Two high-compliance β-Ti alloys – Ti–12Nb–12Zr–12Sn and Ti–6Nb–6Mo–12Zr–12Sn (wt.%) – are manufactured into microlattices via 3D ink-extrusion printing of elemental and hydride powders, followed by sintering and solutionizing at 1400 °C. This study reveals that the formation of “oxygen-rich walls” plays a critical role in triggering embrittlement with intragranular cracking. In compression tests, the Ti–12Nb–12Zr–12Sn microlattices exhibit high compliance (2–6 GPa) but low collapse strength (25–115 MPa) along with semi-brittle behavior, even though stress-induced α” martensite is triggered: stress-strain serrations are explained by the oxygen-rich walls decorated with α plates and athermal ω nanostructures. Nanostructures along these walls are caused by the formation…
Ink Casting and 3D-Extrusion Printing of Yb14MnSb11 for High-Temperature Thermoelectric Material
Complex shapes are created from Yb14MnSb11, a high-temperature thermoelectric Zintl phase, via a two-step process: i) layer-by-layer 3D-extrusion of ink containing partially-reacted powders which are ball-milled from a blend of Yb, MnSb, and Sb powders; ii) heat treatment to synthesize the ternary compound Yb14MnSb11 and densify the extruded powders. A high phase purity for Yb14MnSb11 (83–94%) is achieved in both cast and 3D-extruded ink specimens via a solid-state reaction between Yb, MnSb, and Yb4Sb3 during reactive sintering. Pressure-free sintering at temperatures of 1200–1400 °C densifies the powders to 82% relative density but can also induce the decomposition of the Yb14MnSb11 phase…