3D Bioplotter Research Papers

Displaying all papers about Niobium (3 results)

Ink-Extrusion 3D Printing and Silicide Coating of HfNbTaTiZr Refractory High-Entropy Alloy for Extreme Temperature Applications

Advanced Science 2024 Volume 11, Issue 17, Article 2309693

An oxygen-resistant refractory high-entropy alloy is synthesized in microlattice or bulk form by 3D ink-extrusion printing, interdiffusion, and silicide coating. Additive manufacturing of equiatomic HfNbTaTiZr is implemented by extruding inks containing hydride powders, de-binding under H2, and sintering under vacuum. The sequential decomposition of hydride powders (HfH2+NbH+TaH0.5+TiH2+ZrH2) is followed by in situ X-ray diffraction. Upon sintering at 1400 °C for 18 h, a nearly fully densified, equiatomic HfNbTaTiZr alloy is synthesized; on slow cooling, both α-HCP and β-BCC phases are formed, but on quenching, a metastable single β-BCC phase is obtained. Printed and sintered HfNbTaTiZr alloys with ≈1 wt.% O shows excellent mechanical properties…

NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering

Acta Biomaterialia 2018 Volume 76, Pages 359-370

We present a novel additive manufacturing method for NiTi-Nb micro-trusses combining (i) extrusion-based 3D-printing of liquid inks containing NiTi and Nb powders, solvents, and a polymer binder into micro-trusses with 0/90° ABAB layers of parallel, ∼600 µm struts spaced 1 mm apart and (ii) subsequent heat-treatment to remove the binder and solvents, and then bond the NiTi powders using liquid phase sintering via the formation of a transient NiTi-Nb eutectic phase. We investigate the effects of Nb concentration (0, 1.5, 3.1, 6.7 at.% Nb) on the porosity, microstructure, and phase transformations of the printed NiTi-Nb micro-trusses. Micro-trusses with the highest Nb content…

Use of 3D Printing to Prototype a Custom Shape Memory Alloy Penile Prosthesis

The Journal of Urology 2018 Volume 197, Number, 4, Pages e313ff

Three-dimensional (3D) printing or additive printing is a new technology that allows for construction of complex shapes and designs outside the constraints of traditional manufacturing techniques. Traditional 3D printing was limited to thermosensitive plastics that have limited medical applications. Herein, we describe the application of a cutting edge process that allows for 3D printing of shape memory alloys (SMA) using inks of shape memory alloy powder. Using our previously described concept of a SMA penile prosthesis for the treatment of erectile dysfunction, we sought to construct an intracavernosal cylinder using 3D printing technology.