3D Bioplotter Research Papers
Water-induced polymer swelling and its application in soft electronics
Polymer blend system has been commonly applied in a wide variety of applications. Herein, we propose to introduce sugar particles to polymer matrix, which results in a controllable polymer swelling under the action of osmotic pressure upon soaking in water. Taking advantage of this economic and environment-friendly, water-induced polymer swelling process, we have fabricated wrinkled conductive films and 3D structures by depositing conductive materials on the swollen polymer substrates for stretchable strain sensing devices. Several commercial silicone elastomers were utilized in the study. Key processing factors affecting the polymer swelling were investigated, including film thickness, sugar concentration, and temperature of…
A 3D printed graphene electrode device for enhanced and scalable stem cell culture, osteoinduction and tissue building
Bone related diseases and disorders increasingly impact human health. Electrical stimulation (ES) has been shown to promote osteogenesis and healing of bone defects. Graphene, is an electrically conductive and biocompatible material with good mechanical properties (strength with flexibility), and therefore shows significant promise as a cell-compatible electrode for ES. Graphene-based scaffolds may therefore be used for 3D cell and tissue support, including 3D osteoinduction. We have fabricated 3D graphene electrode structures to provide ES to human adipose stem cells (ADSCs). The assemblies support ADSC growth and differentiation, with ES augmenting proliferation and osteogenesis. Our findings expand our previous work on…
Incorporation of functionalized reduced graphene oxide/magnesium nanohybrid to enhance the osteoinductivity capability of 3D printed calcium phosphate-based scaffolds
Improving bone regeneration is one of the most pressing problems facing bone tissue engineering (BTE) which can be tackled by incorporating different biomaterials into the fabrication of the scaffolds. The present study aims to apply the 3D-printing and freeze-drying methods to design an ideal scaffold for improving the osteogenic capacity of Dental pulp stem cells (DPSCs). To achieve this purpose, hybrid constructs consisted of 3D-printed Beta-tricalcium phosphate (β-TCP)-based scaffolds filled with freeze-dried gelatin/reduced graphene oxide-Magnesium-Arginine (GRMA) matrix were fabricated through a novel green method. The effect of different concentrations of Reduced graphene oxide-Magnesium-Arginine (RMA) (0, 0.25% and 0.75%wt) on the…
Defect-engineered reduced graphene oxide sheets with high electric conductivity and controlled thermal conductivity for soft and flexible wearable thermoelectric generators
The direct use of graphene for potential thermoelectric material requires the opening of its bandgap without loss of its high electric conductivity. We herein demonstrate a synchronous reduction and assembly strategy to fabricate large-area reduced graphene oxide films with high electric conductivity and optimized low thermal conductivity assembly. The reduced graphene oxide films have a high electric conductivity and low thermal conductivity, which results from high longitudinal carrier mobility of the lattice domains as well as the enhanced scattering of phonons in the defects and their boundary that substantially reduces the mean phonon free path and the thermal conductivity. Flexible…