3D Bioplotter Research Papers
Chondrogenesis of mesenchymal stromal cells on the 3D printed polycaprolactone/fibrin/decellular cartilage matrix hybrid scaffolds in the presence of piascledine
Nowadays, cartilage tissue engineering (CTE) is considered important due to lack of repair of cartilaginous lesions and the absence of appropriate methods for treatment. In this study, polycaprolactone (PCL) scaffolds were fabricated by three-dimensional (3D) printing and were then coated with fibrin (F) and acellular solubilized extracellular matrix (ECM). After extracting adipose-derived stem cells (ADSCs), 3D-printed scaffolds were characterized and compared to hydrogel groups. After inducing the chondrogenic differentiation in the presence of Piascledine and comparing it with TGF-β3 for 28 days, the expression of genes involved in chondrogenesis (AGG, COLII) and the expression of the hypertrophic gene (COLX) were examined…
Three-Dimensional Bioprinting of a Structure-, Composition-, and Mechanics-Graded Biomimetic Scaffold Coated with Specific Decellularized Extracellular Matrix to Improve the Tendon-to-Bone Healing
Healing of a damaged tendon-to-bone enthesis occurs through the formation of fibrovascular scar tissue with greatly compromised histological and biomechanical properties instead of the regeneration of a new enthesis due to the lack of graded tissue-engineering zones in the interface during the healing process. In the present study, a structure-, composition-, and mechanics-graded biomimetic scaffold (GBS) coated with specific decellularized extracellular matrix (dECM) (GBS-E) aimed to enhance its cellular differentiation inducibilities was fabricated using a three-dimensional (3-D) bioprinting technique. In vitro cellular differentiation studies showed that from the tendon-engineering zone to the bone-engineering zone in the GBS, the tenogenic differentiation…
Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation
The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) – osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold. We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk, resulting in vascularized bone regeneration. Following implantation in a…
Investigation of multiphasic 3D-bioplotted scaffolds for sitespecific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications
Osteoarthritis is a degenerative joint disease that limits mobility of the affected joint due to the degradation of articular cartilage and subchondral bone. The limited regenerative capacity of cartilage presents significant challenges when attempting to repair or reverse the effects of cartilage degradation. Tissue engineered medical products are a promising alternative to treat osteochondral degeneration due to their potential to integrate into the patient’s existing tissue. The goal of this study was to create a scaffold that would induce site‐specific osteogenic and chondrogenic differentiation of human adipose‐derived stem cells (hASC) to generate a full osteochondral implant. Scaffolds were fabricated using…