3D Bioplotter Research Papers
3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing
Promoting rapid healing of diabetic wounds caused by hyperglycemia, bacterial infection, and chronic inflammation is a global challenge. To address this issue, we design and prepare a novel cerium-based MOF nanozyme hydrogel via 3D printing technology to provide a personalized hydrogel wound dressing. The hydrogel is unique in that cerium-based MOFs are grown into the hydrogel network, simplifying the printing process of MOF hydrogel. The prepared hydrogel exhibits specific catalytic activity to various oxygen free radicals and glucose concentration-dependent color changes due to the interconversion between different valence cerium ions. This feature allows for indirect monitoring of glucose content around…
Decelerated vascularization in tissue-engineered constructs in association with diabetes mellitus in vivo
Aims Rapid blood vessel ingrowth in transplanted tissue engineering constructs is the key factor for successful incorporation, but many potential patients who may use engineered tissues suffer from widespread diseases that limit the capacity of neovascularization (e.g. diabetes). Thus, in vivo vascularization analyses of tissue-engineered constructs in angiogenically affected organisms are required. Methods We therefore investigated the in vivo incorporation of collagen-coated and cell-seeded poly-L-lactide-co-glycolide scaffolds in diabetic B6.BKS(D)-Leprdb/J mice using repetitive intravital fluorescence microscopy over a time period of two weeks. For this purpose, scaffolds were seeded with osteoblast-like or bone marrow mesenchymal stem cells and implanted into the…