3D Bioplotter Research Papers

Displaying all papers about Growth Factor (TGFβ3) (7 results)

Chondrogenesis of mesenchymal stromal cells on the 3D printed polycaprolactone/fibrin/decellular cartilage matrix hybrid scaffolds in the presence of piascledine

Journal of Biomaterials Science, Polymer Edition 2024 Volume 35, Issue 6, Pages 799-822

Nowadays, cartilage tissue engineering (CTE) is considered important due to lack of repair of cartilaginous lesions and the absence of appropriate methods for treatment. In this study, polycaprolactone (PCL) scaffolds were fabricated by three-dimensional (3D) printing and were then coated with fibrin (F) and acellular solubilized extracellular matrix (ECM). After extracting adipose-derived stem cells (ADSCs), 3D-printed scaffolds were characterized and compared to hydrogel groups. After inducing the chondrogenic differentiation in the presence of Piascledine and comparing it with TGF-β3 for 28 days, the expression of genes involved in chondrogenesis (AGG, COLII) and the expression of the hypertrophic gene (COLX) were examined…

Meniscal fibrocartilage regeneration inspired by meniscal maturational and regenerative process

Science Advances 2023 Volume 9, Issue 45, Article eadg8138

Meniscus is a complex and crucial fibrocartilaginous tissue within the knee joint. Meniscal regeneration remains to be a scientific and translational challenge. We clarified that mesenchymal stem cells (MSCs) participated in meniscal maturation and regeneration using MSC-tracing transgenic mice model. Here, inspired by meniscal natural maturational and regenerative process, we developed an effective and translational strategy to facilitate meniscal regeneration by three-dimensionally printing biomimetic meniscal scaffold combining autologous synovium transplant, which contained abundant intrinsic MSCs. We verified that this facilitated anisotropic meniscus–like tissue regeneration and protected cartilage from degeneration in large animal model. Mechanistically, the biomechanics and matrix stiffness up-regulated…

Regional specific tunable meniscus decellularized extracellular matrix (MdECM) reinforced bioink promotes anistropic meniscus regeneration

Chemical Engineering Journal 2023 Volume 473, Article 145209

The healing of meniscus injuries poses a significant challenge, as prolonged failure to heal can lead to osteoarthritis, which presents a therapeutic dilemma in the field of sports medicine. Decellularized extracellular matrix (MdECM) derived from natural meniscus, and the incorporated growth factors have been used for potential fibrochondrocyte induction and meniscus regeneration. However, homogeneous MdECM is difficult to achieve region-specific biomimetic microenvironment for tissue regeneration. In this study, we successfully prepared a region-specific MdECM, which were then mixed with an ultraviolet responsible Gelatin Methacryloyl (GelMA)/hyaluronic acid Methacryloy (HAMA) hydrogel incorporated with bioactive factors, faciliatated a functional region-specific bioink. The 3D…

3D Printing Bioactive PLGA Scaffolds Using DMSO as a Removable Solvent

Bioprinting 2018 Volume 10, June 2018, Article e00038

Present bioprinting techniques lack the methodology to print with bioactive materials that retain their biological functionalities. This constraint is due to the fact that extrusion-based printing of synthetic polymers is commonly performed at very high temperatures in order to achieve desired mechanical properties and printing resolutions. Consequently, current methodology prevents printing scaffolds embedded with bioactive molecules, such as growth factors. With the wide use of mesenchymal stem cells (MSCs) in regenerative medicine research, the integration of growth factors into 3D printed scaffolds is critical because it can allow for inducible MSC differentiation. We have successfully incorporated growth factors into extrusion…

Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration

Biofabrication 2016 Volume 8, Number 2, 025003

Three dimensional (3D) printing has emerged as an efficient tool for tissue engineering and regenerative medicine, given its advantages for constructing custom-designed scaffolds with tunable microstructure/physical properties. Here we developed a micro-precise spatiotemporal delivery system embedded in 3D printed scaffolds. PLGA microspheres (μS) were encapsulated with growth factors (GFs) and then embedded inside PCL microfibers that constitute custom-designed 3D scaffolds. Given the substantial difference in the melting points between PLGA and PCL and their low heat conductivity, μS were able to maintain its original structure while protecting GF’s bioactivities. Micro-precise spatial control of multiple GFs was achieved by interchanging dispensing…

Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep

Science Translational Medicine 2014 Volume 6, Issue 266, Pages 266ra171

Regeneration of complex tissues, such as kidney, liver, and cartilage, continues to be a scientific and translational challenge. Survival of ex vivo cultured, transplanted cells in tissue grafts is among one of the key barriers. Meniscus is a complex tissue consisting of collagen fibers and proteoglycans with gradient phenotypes of fibrocartilage and functions to provide congruence of the knee joint, without which the patient is likely to develop arthritis. Endogenous stem/progenitor cells regenerated the knee meniscus upon spatially released human connective tissue growth factor (CTGF) and transforming growth factor–β3 (TGFβ3) from a three-dimensional (3D)–printed biomaterial, enabling functional knee recovery. Sequentially…

Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study

The Lancet 2010 Volume 376, Issue 9739, Pages 440-448

Background A common approach for tissue regeneration is cell delivery, for example by direct transplantation of stem or progenitor cells. An alternative, by recruitment of endogenous cells, needs experimental evidence. We tested the hypothesis that the articular surface of the synovial joint can regenerate with a biological cue spatially embedded in an anatomically correct bioscaffold. Methods In this proof of concept study, the surface morphology of a rabbit proximal humeral joint was captured with laser scanning and reconstructed by computer-aided design. We fabricated an anatomically correct bioscaffold using a composite of poly-ɛ-caprolactone and hydroxyapatite. The entire articular surface of unilateral…