3D Bioplotter Research Papers
Bioactive scaffolds integrated with micro-precise spatiotemporal delivery and in vivo degradation tracking for complex tissue regeneration
Three-dimensional (3D) printing has evolved to incorporate controlled delivery systems to guide the regeneration of complex tissues, with limited clinical translation. The challenges include the limited precision in spatiotemporal delivery and poorly understood in vivo scaffold degradation rates. Here, we report auspicious preclinical outcomes in the functional regeneration of temporomandibular joint (TMJ) discs of mini-pigs. TMJ disc has been an extremely challenging target for regenerative engineering given the uniquely heterogeneous matrix distribution and region-variant anisotropic orientation. We optimally implemented advanced 3D printing technologies with micro-precise spatiotemporal delivery to build anatomically correct, bioactive scaffolds with native-like regionally variant microstructure and mechanical…
Quantum dots-labeled polymeric scaffolds for in vivo tracking of degradation and tissue formation
The inevitable gap between in vitro and in vivo degradation rate of biomaterials has been a challenging factor in the optimal designing of scaffold’s degradation to be balanced with new tissue formation. To enable non-/minimum-invasive tracking of in vivo scaffold degradation, chemical modifications have been applied to label polymers with fluorescent dyes. However, the previous approaches may have limited expandability due to complicated synthesis processes. Here, we introduce a simple and efficient method to fluorescence labeling of polymeric scaffolds via blending with near-infrared (NIR) quantum dots (QDs), semiconductor nanocrystals with superior optical properties. QDs-labeled, 3D-printed PCL scaffolds showed promising efficiency…