3D Bioplotter Research Papers
Plasma surface modification of two-component composite scaffolds consisting of 3D-printed and electrospun fiber components from biodegradable PLGA and PLCL
In this study, two-component, morphologically composite scaffolds consisting of a 3D-printed component and an electrospun fiber component were fabricated and treated with a nitrogen-argon (N2-Ar) plasma to enhance their surface properties. The 3D-printed component provided mechanical strength, while the electrospun fibrous component acted as a mimic to the extracellular matrix to improve cell-substrate interactions. Two biodegradable polyesters, poly(L-lactide-co–ε-caprolactone) (PLCL) and poly(L-lactide-co-glycolide) (PLGA), were used to create the scaffolds. The resulting 3D/E/N2-Ar scaffolds were characterized in terms of surface properties (morphology, chemical compositions, wettability, roughness, crystallinity), degradation, mechanical properties, and cell cytotoxicity, cell attachment and proliferation, LDH release and cell apoptosis.…
3D-printed PLA/PEO blend as biodegradable substrate coating with CoCl2 for colorimetric humidity detection
This study aimed to fabricate biodegradable substrate with colorimetric humidity indicator for detective moisture in food packaging. The poor properties of poly(lactic acid) (PLA) were enhanced by melt blending PLA with non-toxic poly(ethylene oxide) PEO at 180 °C. Specifically, three-dimensional (3D) substrates of PLA/PEO blends were fabricated by solvent-cast 3D printing. Furthermore, cobalt chloride (CoCl2) solution was printed onto the substrate with an inkjet printer to serve as a colorimetric humidity sensing indicator. It found that the flexibility and thermal stability of the PLA were improved and the hydrophilicity was increased with an increase in PEO content. Color changes and…