3D Bioplotter Research Papers

Displaying all papers by Y. He (6 results)

Three-Dimensional Bioprinting of a Structure-, Composition-, and Mechanics-Graded Biomimetic Scaffold Coated with Specific Decellularized Extracellular Matrix to Improve the Tendon-to-Bone Healing

ACS Applied Materials & Interfaces 2023 Volume 15, Issue 24, Pages 28964-28980

Healing of a damaged tendon-to-bone enthesis occurs through the formation of fibrovascular scar tissue with greatly compromised histological and biomechanical properties instead of the regeneration of a new enthesis due to the lack of graded tissue-engineering zones in the interface during the healing process. In the present study, a structure-, composition-, and mechanics-graded biomimetic scaffold (GBS) coated with specific decellularized extracellular matrix (dECM) (GBS-E) aimed to enhance its cellular differentiation inducibilities was fabricated using a three-dimensional (3-D) bioprinting technique. In vitro cellular differentiation studies showed that from the tendon-engineering zone to the bone-engineering zone in the GBS, the tenogenic differentiation…

Functionalized gelatin-alginate based bioink with enhanced manufacturability and biomimicry for accelerating wound healing

International Journal of Biological Macromolecules 2023 Volume 240, Article 124364

Three-dimensional (3D) bioprinting is a promising technique to construct heterogeneous architectures that mimic cell microenvironment. However, the current bioinks for 3D bioprinting usually show some limitations, such as low printing accuracy, unsatisfactory mechanical properties and compromised cytocompatibility. Herein, a novel bioink comprising hydroxyphenyl propionic acid-conjugated gelatin and tyramine-modified alginate is developed for printing 3D constructs. The bioink takes advantage of an ionic/covalent intertwined network that combines covalent bonds formed by photo-mediated redox reaction and ionic bonds formed by chelate effect. Benefiting from the thermosensitivity of gelatin and the double-crosslinking mechanism, the developed bioink shows controllable rheological behaviors, enhanced mechanical behavior,…

Stepwise Multi-Cross-Linking Bioink for 3D Embedded Bioprinting to Promote Full-Thickness Wound Healing

ACS Applied Materials & Interfaces 2023 Volume 15, Issue 20, Pages 24034–24046

The emergence and innovation of three-dimensional (3D) bioprinting provide new development opportunities for tissue engineering and regenerative medicine. However, how to obtain bioinks with both biomimicry and manufacturability remains a great issue in 3D bioprinting. Developing intelligent responsive biomaterials is conducive to break through the current dilemma. Herein, a stepwise multi-cross-linking strategy concerning thermosensitive thiolated Pluronic F127 (PF127-SH) and hyaluronic acid methacrylate (HAMA) is proposed to achieve temperature-controlled 3D embedded bioprinting, specifically pre-cross-linking (Michael addition reaction) at low temperatures (4–20 °C) and subsequently self-assembly (hydrophobic interaction) in a high-temperature (30–37 °C) suspension bath as well as final photo-cross-linking (mainly thiol-ene…

4D printing of multiple shape memory polymer and nanocomposites with biocompatible, programmable and selectively actuated properties

Additive Manufacturing 2022 Volume 53, Article 102689

4D printing of shape memory polymers (SMPs) endows the 3D printed structures with tunable shape-changing behavior and functionalities that opens up new avenues towards intelligent devices. Multiple-SMPs, specially, could memorize more than two shapes that have greatly extended the performance of 4D printed structures. However, the actuation to trigger the shape change of 4D printed multiple-SMPs is usually by direct heating to different temperatures. It hasn’t brought the full superiority of the programmability of multiple-SMPs with distinct responsive regions that could be sequentially and selectively actuated by various stimuli. Besides, the functionality of multi-material based additive manufacturing is another area…

Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation

Bioactive Materials 2022 Volume 9, Pages 491-507

The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) – osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold. We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk, resulting in vascularized bone regeneration. Following implantation in a…

Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering

Acta Biomaterialia 2018 Volume 74, Pages 131-142

Bioengineered adipose tissues have gained increased interest as a promising alternative to autologous tissue flaps and synthetic adipose fillers for soft tissue augmentation and defect reconstruction in clinic. Although many scaffolding materials and biofabrication methods have been investigated for adipose tissue engineering in the last decades, there are still challenges to recapitulate the appropriate adipose tissue microenvironment, maintain volume stability, and induce vascularization to achieve long-term function and integration. In the present research, we fabricated cryogels consisting of methacrylated gelatin, methacrylated hyaluronic acid, and 4arm poly(ethylene glycol) acrylate (PEG-4A) by using cryopolymerization. The cryogels were repeatedly injectable and stretchable, and…