3D Bioplotter Research Papers
A dual-crosslinking electroactive hydrogel based on gelatin methacrylate and dibenzaldehyde-terminated telechelic polyethylene glycol for 3D bio-printing
Gelatin was widely used as scaffold materials in 3D bio-printing due to its excellent bioactivity and availability and especially that their arginine–glycine–aspartic acid (RGD) sequences could efficiently promote cell adhesion and proliferation. In this study, an electroactive and 3D bio-printable hydrogel was prepared through a two-step chemical cross-linking process. Specifically, residual free amino groups of methacrylated gelatin (GelMA) were cross-linked with the aldehyde groups of dibenzaldehyde-terminated telechelic polyethylene glycol (DF-PEG) via Schiff base bonds, forming a gel at 37 °C. During the subsequent 3D bio-printing process, GelMA underwent UV curing, forming a secondary cross-linked network to the mechanical strength and stability…
Additive Manufacturing of Nanocellulose Aerogels with Structure-Oriented Thermal, Mechanical, and Biological Properties
Additive manufacturing (AM) is widely recognized as a versatile tool for achieving complex geometries and customized functionalities in designed materials. However, the challenge lies in selecting an appropriate AM method that simultaneously realizes desired microstructures and macroscopic geometrical designs in a single sample. This study presents a direct ink writing method for 3D printing intricate, high-fidelity macroscopic cellulose aerogel forms. The resulting aerogels exhibit tunable anisotropic mechanical and thermal characteristics by incorporating fibers of different length scales into the hydrogel inks. The alignment of nanofibers significantly enhances mechanical strength and thermal resistance, leading to higher thermal conductivities in the longitudinal…
3D printed and smart alginate wound dressings with pH-responsive drug and nanoparticle release
The pH of a wound site can undergo a significant change from its normal range of 5.4–5.6 to a more alkaline environment of 7.2–8.9 after being infected by microorganisms. Therefore, the development of a smart material that can respond to this shift in pH and release antimicrobial agents for effective treatment of wound infections holds great promise for the future of wound care. In the present work, we produced 3D printed alginate wound dressings doped with calcium phosphate nanoparticles (CaP NPs), referred to as alginate-CaP nanocomposites hereafter. The CaP NPs enabled pH-responsive switching of the degradation and drug release of…