3D Bioplotter Research Papers
Enhanced bone regeneration by low-intensity pulsed ultrasound and lipid microbubbles on PLGA/TCP 3D-printed scaffolds
Background To investigate the effect of low-intensity pulsed ultrasound (LIPUS) combined with lipid microbubbles on the proliferation and bone regeneration of bone marrow mesenchymal stem cells (BMSCs) in poly (lactic-glycolic acid copolymer) (PLGA)/α-tricalcium phosphate (TCP) 3D-printed scaffolds. Methods BMSCs were irradiated with different LIPUS parameters and microbubble concentrations, and the best acoustic excitation parameters were selected. The expression of type I collagen and the activity of alkaline phosphatase were detected. Alizarin red staining was used to evaluate the calcium salt production during osteogenic differentiation. Results BMSCs proliferation was the most significant under the condition of 0.5% (v/v) lipid microbubble concentration,…
Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds
The present study sought to demonstrate the swelling behavior of hydrogel-microcarrier composite constructs to inform their use in controlled release and tissue engineering applications. In this study, gelatin methacrylate (GelMA) and GelMA-gelatin microparticle (GMP) composite constructs were three-dimensionally printed, and their swelling and degradation behavior was evaluated over time and as a function of the degree of crosslinking of included GMPs. GelMA-only constructs and composite constructs loaded with GMPs crosslinked with 10 mM (GMP-10) or 40 mM (GMP-40) glutaraldehyde were swollen in phosphate-buffered saline for up to 28 days to evaluate changes in swelling and polymer loss. In addition, scaffold reswelling capacity…
Collagen/hydroxyapatite bone grafts manufactured by homogeneous/ heterogeneous 3D printing
This paper presents a new way to obtain collagen/hydroxyapatite (COLL/HA) composite materials by 3D printing. Because of high tendency of segregation of COLL/HA composite materials, printing was done using COLL/Ca2+ gel (even COLL/Ca(OH)2) followed by precipitation of HA and crosslinking of COLL. The HA precipitation occurs simultaneously with crosslinking of COLL molecules, these processes being assured by the presence of glutaraldehyde supplemented PBS solution. By printing with COLL/Ca2+ at acidic pH homogeneity was increased. FTIR spectroscopy and microscopy reveal HA formation as the main inorganic phase these nanoparticles being homogeneously dispersed in the volume. In vitro biocompatibility assays were performed…