3D Bioplotter Research Papers

Displaying all papers about Hydroxypropyl methylcellulose (5 results)

Porous bioceramic scaffolds based on akermanite obtained by 3D printing for bone tissue engineering

Ceramics International 2023 Volume 49, Issue 22, Pages 35898-35906

Porous bioceramic scaffolds were obtained by the 3D printing technique starting from a mixture of hydroxypropyl methyl cellulose and a powder obtained by sol-gel method which contains merwinite, monticellite, pseudowolastonie and periclase.The scaffolds were thermally treated at 1370 °C for 3 h and the main mineralogical compound assessed by XRD was akermanite. The obtained scaffolds have adequate mechanical and biological properties thus a great potential for applications in hard tissue engineering. The positive results obtained for this type of scaffolds are due to the precision of 3D printing technique, i.e. ability to control shape and size of both scaffolds and…

Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles

Acta Biomaterialia 2023 Volume 155, Pages 654-666

The development of new biomaterials for bone tissue regeneration with high bioactivity abilities and antibacterial properties is being intensively investigated. We have synthesized nanocomposites formed by mesoporous bioactive glasses (MBGs) in the ternary SiO2, CaO and P2O5 system doped with metallic silver nanoparticles (AgNPs) that were homogenously embedded in the MBG matrices. Ag/MBG nanocomposites have been directly synthesized and silver species were spontaneously reduced to metallic AgNPs by high temperatures (700 °C) obtained of last MBG synthesis step. Three-dimensional silver-containing mesoporous bioactive glass scaffolds were fabricated showing uniformly interconnected ultrapores, macropores and mesopores. The manufacture method consisted of a combination…

Mechanistic understanding of the performance of personalized 3D-printed cardiovascular polypills: A case study of patient-centered therapy

International Journal of Pharmaceutics 2022 Volume 617, Article 121599

The 3D printing has become important in drug development for patient-centric therapy by combining multiple drugs with different release characteristics in a single polypill. This study explores the critical formulation and geometric variables for tailoring the release of Atorvastatin and Metoprolol as model drugs in a polypill when manufactured via pressure-assisted-microextrusion 3D printing technology. The effects of these variables on the extrudability of printing materials, drug release and other quality characteristics of polypills were studied employing a definitive screening design. The extrudability of printing materials was evaluated in terms of flow pressure, non-recoverable strain, compression rate, and elastic/plastic flow. The…

Toughening 3D-printed Sr–HT–Gahnite caffold through natural and synthetic polymer coating

International Journal of Applied Biomedical Engineering 2020 Volume 13, number 1, Pages 18-22

Bone scaffold for aiding bone regeneration in large bone defects should have following ideal characteristics; biocompatibility, biodegradability, bio-activity, high porous and interconnected-pore architecture, as well as, mechanical characteristics similar to the cortical bone for supporting loads. 3D printed Sr–HT (Sr–Ca2ZnSi2O7)–gahnite scaffold with hexagonal pore structure is an interesting bone scaffold meeting most of these ideal features. To explain, biocompatible, osteoinductive, and osteoconductive properties as well as unique high compressive strength are obtained from Sr–HT–gahnite, glass-ceramic, material. With hexagonal pore structure, the scaffold has compressive strength comparable to cortical bone balancing with high porosity and large pore size. Nonetheless, the scaffold…

Investigation of semi-solid formulations for 3D printing of drugs after prolonged storage to mimic real-life applications

European Journal of Pharmaceutical Sciences 2020 Volume 146, Article 105266

The implementation of tailor-made dosage forms is currently one of the biggest challenges in the health sector. Over the last years, different approaches have been introduced to provide an individual and precise dispensing of the appropriate dose of an active pharmaceutical ingredient (API). A more recent approach, which has been intensively researched in the last years, is 3D-printing of medicines. The aim of this work was to develop printing formulations free of organic solvents for a pressure-assisted microsyringe printing method (PAM), which should also be printable over several days of storage. Furthermore, the printed dosage forms should provide a sustained…