3D Bioplotter Research Papers

Displaying all papers about Induced Pluripotent Stem Cells (iPSCs) (5 results)

The 3D bioprinted human induced pluripotent stem cell-derived cardiac model: Toward functional and patient-derived in vitro models for disease modeling and drug screening

Bioprinting 2023 Volume 36, Article e00313

More relevant human tissue models are needed to produce reliable results when studying disease mechanisms of genetic diseases and developing or testing novel drugs in cardiac tissue engineering (TE). Three-dimensional (3D) bioprinting enables physiologically relevant positioning of the cells inside the growth matrix according to the detailed digital design. Here we combined human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) with methacrylated gelatin (GelMA) and collagen I-based bioink and 3D extrusion bioprinted a cardiac in vitro model for disease modeling and drug screening. Bioprinted constructs were characterized for their rheological properties, swelling behavior, degradation, as well as shape fidelity. The…

Defined, Simplified, Scalable, and Clinically Compatible Hydrogel-Based Production of Human Brain Organoids

Organoids 2023 Volume 2, Issue 1, Pages 20-36

Human brain organoids present a new paradigm for modeling human brain organogenesis, providing unprecedented insight to the molecular and cellular processes of brain development and maturation. Other potential applications include in vitro models of disease and tissue trauma, as well as three-dimensional (3D) clinically relevant tissues for pharmaceuticals development and cell or tissue replacement. A key requirement for this emerging technology in both research and medicine is the simple, scalable, and reproducible generation of organoids using reliable, economical, and high-throughput culture platforms. Here we describe such a platform using a defined, clinically compliant, and readily available hydrogel generated from gelatin…

Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Produce Distinct Neural 3D In Vitro Models Depending on Alginate/Gellan Gum/Laminin Hydrogel Blend Properties

Advanced Healthcare Materials 2021 Volume 10, Issue 16, Article 2100131

Stable and predictive neural cell culture models are a necessary premise for many research fields. However, conventional 2D models lack 3D cell-material/-cell interactions and hence do not reflect the complexity of the in vivo situation properly. Here two alginate/gellan gum/laminin (ALG/GG/LAM) hydrogel blends are presented for the fabrication of human induced pluripotent stem cell (hiPSC)-based 3D neural models. For hydrogel embedding, hiPSC-derived neural progenitor cells (hiNPCs) are used either directly or after 3D neural pre-differentiation. It is shown that stiffness and stress relaxation of the gel blends, as well as the cell differentiation strategy influence 3D model development. The embedded…

Cell Bioprinting: The 3D-Bioplotter™ Case

Materials 2019 Volume 12, Issue 23, Article 4005

The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with…

3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation

Advanced Healthcare Materials 2017 Volume 6, Issue 17, Article 1700175

The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine, including individualized, patient-specific stem cell-based treatments. There are, however, few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids. Bioprinting iPSCs with advanced biomaterials promises to augment efforts to develop 3D tissues, ideally comprising direct-write printing of cells for encapsulation, proliferation, and differentiation. Here, such a method, employing a clinically amenable polysaccharide-based bioink, is described as the first example of bioprinting human…