3D Bioplotter Research Papers
Development of a 3D Printing Strategy for Completely Polymeric Neural Interfaces Fabrication
The fabrication of neural interfaces (NIs) typically relies nowadays on the implementation of complex, expensive, and time-consuming photolithographic processes. Metals and polymers are the materials currently used to fabricate NIs. Conductive polymers could be an alternative to metals to enhance the biocompatibility of the devices. Additive manufacturing techniques provide an easier and low-cost approach to process and finely tuning the geometrical and morphological features of polymers. Here, we propose a 3D printing strategy for the fabrication of completely polymeric neural interfaces, based on extrusion printing. The materials have been chosen to enhance the biocompatibility of the devices. PDMS has been…
Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics
Biofabrication techniques such as microlithography and 3-D bioprinting have emerged in recent years as technologies capable of rendering complex, biocompatible constructs for biosensors, tissue and regenerative engineering and bioelectronics. While instruments and processes have been the subject of immense advancement, multifunctional bioinks have received less attention. A novel photocrosslinkable, hybrid bioactive and inherently conductive bioink formed from poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanomaterials within poly(2-hydroxyethyl methacrylate-co-polyethyleneglycol methacrylate) p(HEMA-co-EGMA) was used to render complex hydrogel constructs through microlithographic fabrication and 3-D printing. Constructs were directly compared through established metrics of acuity and fidelity, using side-by-side comparison of microarray grids, triangles incorporating angles 15–90°,…
Paper-Based, Chemiresistive Sensor for Hydrogen Peroxide Detection
Detecting hydrogen peroxide (H2O2) as the side product of enzymatic reactions is of great interest in food and medical applications. Despite the advances in this field, the majority of reported H2O2 sensors are bulky, expensive, limited to only one phase detection (either gas or liquid), and require multistep fabrications. This article aims to address some of these limitations by presenting a 3D printable paper-based sensor made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) decorated with horseradish peroxidase, an enzyme able to interact with H2O2. Unlike most electrochemical PEDOT:PSS-based H2O2 sensors with voltametric or potentiometric mechanisms, the sensing mechanism in this technology is impedimetric, significantly…
Printed, Flexible pH Sensor Hydrogels for Wet Environments
Current sensors for monitoring environmental signals, such as pH, are often made from rigid materials that are incompatible with soft biological tissues. The high stiffness of such materials sets practical limitations on the in situ utilization of sensors under biological conditions. This article describes a soft yet robust hydrogel‐based pH sensor that can be 3D printed. The pH‐sensitive poly(3,4‐ethylenedioxythiophene) is combined with hydrophilic polyurethane to create novel printable inks with favorable biomechanical properties. These inks are employed to fabricate highly flexible pH sensors that linearly respond to pH in wet environments. The pH sensitive hydrogels can undergo extreme deformations including…