3D Bioplotter Research Papers

Displaying all papers about Shape Memory (6 results)

4D printing of multiple shape memory polymer and nanocomposites with biocompatible, programmable and selectively actuated properties

Additive Manufacturing 2022 Volume 53, Article 102689

4D printing of shape memory polymers (SMPs) endows the 3D printed structures with tunable shape-changing behavior and functionalities that opens up new avenues towards intelligent devices. Multiple-SMPs, specially, could memorize more than two shapes that have greatly extended the performance of 4D printed structures. However, the actuation to trigger the shape change of 4D printed multiple-SMPs is usually by direct heating to different temperatures. It hasn’t brought the full superiority of the programmability of multiple-SMPs with distinct responsive regions that could be sequentially and selectively actuated by various stimuli. Besides, the functionality of multi-material based additive manufacturing is another area…

Programmable 4D Printing of Photoactive Shape Memory Composite Structures

ACS Applied Materials & Interfaces 2022 Volume 14, Issue 37, Pages 42568-42577

4D printing is an advanced manufacturing technology combining additive manufacturing with smart materials. Based on light-active shape memory composites, smart medical structures with remote control capability, therapeutic function, and biocompatibility are hopefully fabricated by 4D printing. Here, a multifunctional composite with good mechanical properties, biocompatibility, and light-active shape memory performance is prepared by incorporating gold nanoparticles into a shape memory polyurethane matrix. The composites demonstrate a rapid and stable light-thermal effect, which can achieve localized and controlled breast tumor ablation, providing an approach to hyperthermia treatment for cancer cells. By directly bioprinting the composite melt, a series of 4D-printed structures…

4D printed orbital stent for the treatment of enophthalmic invagination

Biomaterials 2022 Volume 291, Article 121886

Currently, the implants used for enophthalmic invagination have the disadvantages of precise filling difficulty, weak filling ability, large surgical wounds, and lack of CT development. Here, a CT-developable orbital stent was manufactured via 4D printing of a shape memory polyurethane composite for enophthalmos treatment. The composite was endowed with good CT development properties via incorporation of gold nanoparticles and nano-hydroxyapatite. Based on the bionic idea and CT reconstruction technique, a 4D printed orbital stent with a bionic honeycomb pore structure and an outer contour matching the orbital coloboma was designed to support the orbital tissue more accurately and stably. CT…

Functionalized Cellulose Nanocrystals as Active Reinforcements for Light-Actuated 3D-Printed Structures

ACS Nano 2022 Volume 16, Issue 11, Pages 18210-18222

Conventional manufacturing techniques allow the production of photoresponsive cellulose nanocrystals (CNC)-based composites that can reversibly modify their optical, mechanical, or chemical properties upon light irradiation. However, such materials are often limited to 2D films or simple shapes and do not benefit from spatial tailoring of mechanical properties resulting from CNC alignment. Herein, we propose the direct ink writing (DIW) of 3D complex structures that combine CNC reinforcement effects with photoinduced responses. After grafting azobenzene photochromes onto the CNC surfaces, up to 15 wt % of modified nanoparticles can be introduced into a polyurethane acrylate matrix. The influence of CNC on…

Shape memory epoxy composites with high mechanical performance manufactured by multi-material direct ink writing

Composites Part A: Applied Science and Manufacturing 2020 Volume 135, Article 105903

Using 3D printing to manufacture shape memory polymers (SMPs) becomes popular, since the technique endows SMPs the ability to shape into desired structures according to their applications. Among various types of SMPs, epoxy-based shape memory polymer and their composites are known for their high modulus and strength. However, limited by their rheological behavior, it is still hard to prepare high-quality printable epoxy materials. Here, by carefully tuning of rheological properties, we can prepare printable ink showing good shape retention, excellent mechanical performances below and above the glass transition temperature of epoxy, as well as good shape memory effect. The prepared…

Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants

Advanced Healthcare Materials 2017 Volume 6, Issue 22, 1701021

The pursuit for the “perfect” biomimetic and personalized implant for musculoskeletal tissue regeneration remains a big challenge. 3D printing technology that makes use of a novel and promising biomaterials can be part of the solution. In this study, a fast setting enzymatic-crosslinked silk fibroin (SF) bioink for 3D bioprinting is developed. Their properties are fine-tuned and different structures with good resolution, reproducibility, and reliability can be fabricated. Many potential applications exist for the SF bioinks including 3D bioprinted scaffolds and patient-specific implants exhibiting unique characteristics such as good mechanical properties, memory-shape feature, suitable degradation, and tunable pore architecture and morphology.