3D Bioplotter Research Papers
[Performance of 3D-printed polylactic acid-nano-hydroxyapatite/chitosan/doxycycline antibacterial scaffold]
BACKGROUND: Polylactic acid has good biocompatibility and biodegradability, and has become a new orthopedic fixation material. However, the lack of cell recognition signal of this material is not conducive to cell adhesion and osteogenic differentiation, which limits its application in biomaterials. OBJECTIVE: 3D-printed polylactic acid-nano-hydroxyapatite (nHA)/chitosan (CS) scaffold to evaluate its drug sustained-release and biological properties
Carbon fiber reinforced liquid crystalline elastomer composites: a dual exploration in strength augmentation and transformation flexibility through 4D printing
Liquid Crystal Elastomers (LCEs) are renowned for their reversible deformation capabilities. Yet, enhancing their mechanical strength while retaining such flexibility has posed a considerable challenge. To overcome this, we utilized 4D printing to develop an innovative composite of LCE with carbon fiber fabric (LCEC). This approach has notably increased the tensile strength of LCE by eightfold, all the while maintaining its exceptional capacity for reversible deformation. By adjusting the alignment angle between carbon fiber and the LCE printing direction from 0° to 90°, the LCEC demonstrates an array of new deformation patterns, including bending, twisting, wrapping, and S-shaped transformations, which…
Extrusion bioprinting of elastin-containing bioactive double-network tough hydrogels for complex elastic tissue regeneration
Despite recent advances in extrusion bioprinting of cell-laden hydrogels, using naturally derived bioinks to biofabricate complex elastic tissues with both satisfying biological functionalities and superior mechanical properties is hitherto an unmet challenge. Here, we address this challenge with precisely designed biological tough hydrogel bioinks featuring a double-network structure. The tough hydrogels consisted of energy-dissipative dynamically crosslinked glycosaminoglycan hyaluronic acid (o-nitrobenzyl-grafted hyaluronic acid) and elastin through Schiff’s base reaction, and free-radically polymerized gelatin methacryloyl. The incorporation of elastin further improved the elasticity, stretchability (∼170% strain), and toughness (∼45 kJ m−3) of the hydrogels due to the random coiling structure. We used this novel…
A dual-crosslinking electroactive hydrogel based on gelatin methacrylate and dibenzaldehyde-terminated telechelic polyethylene glycol for 3D bio-printing
Gelatin was widely used as scaffold materials in 3D bio-printing due to its excellent bioactivity and availability and especially that their arginine–glycine–aspartic acid (RGD) sequences could efficiently promote cell adhesion and proliferation. In this study, an electroactive and 3D bio-printable hydrogel was prepared through a two-step chemical cross-linking process. Specifically, residual free amino groups of methacrylated gelatin (GelMA) were cross-linked with the aldehyde groups of dibenzaldehyde-terminated telechelic polyethylene glycol (DF-PEG) via Schiff base bonds, forming a gel at 37 °C. During the subsequent 3D bio-printing process, GelMA underwent UV curing, forming a secondary cross-linked network to the mechanical strength and stability…
3D Printing-Electrospinning Hybrid Nanofibrous Scaffold as LEGO-Like Bricks for Modular Assembling Skeletal Muscle-on-a-Chip Functional Platform
Organ-on-a-chip stands as a pivotal platform for skeletal muscle research while constructing 3D skeletal muscle tissues that possess both macroscopic and microscopic structures remains a considerable challenge. This study draws inspiration from LEGO-like assembly, employing a modular approach to construct muscle tissue that integrates biomimetic macroscopic and microscopic structures. Modular LEGO-like hybrid nanofibrous scaffold bricks were fabricated by the combination of 3D printing and electrospinning techniques. Skeletal muscle cells cultured on these modular scaffold bricks exhibited a highly orientated nanofibrous structure. A variety of construction of skeletal muscle tissues further enabled development by various assembling processes. Moreover, skeletal muscle-on-a-chip (SMoC)…
Cucurbit[8]uril Mediated Supramolecular and Photocrosslinked Interpenetrating Network Hydrogel Matrices for 3D-Bioprinting
Printing of biologically functional constructs is significant for applications in tissue engineering and regenerative medicine. Designing bioinks remains remarkably challenging due to the multifaceted requirements in terms of the physical, chemical, and biochemical properties of the three-dimensional matrix, such as cytocompatibility, printability, and shape fidelity. In order to promote matrix and materials stiffness, while not sacrificing stress relaxation mechanisms which support cell spreading, migration, and differentiation, this work reports an interpenetrating network (IPN) bioink design. The approach makes use of a chemically defined network, combining physical and chemical crosslinking units with a tunable composition and network density, as well as…
Optimization of cellulose nanocrystal (CNC) concentration in polycaprolactone bio-composites for bio-plotting: a robust interpretation of the reinforcement mechanisms
Bioabsorbable and biodegradable composites have experienced rapid growth, owing to their high demand in the biomedical sector. Polymer-cellulose nanocrystal (CNC) compounds were developed using a medical-grade poly (ε-caprolactone) (PCL) matrix to improve the stiffness and load-bearing capacity of pure PCL. Five PCL/CNCs filament grades were melt-extruded, pelletized, and fed into an industrial bioplotter to fabricate specimens. To assess the effects of CNCs on pure PCL, 14 tests were conducted, including rheological, thermomechanical, and in situ micro-mechanical testing, among others. The porosity and dimensional accuracy of the samples were also documented using micro-computed tomography while scanning electron microscopy was employed for…
Additive Manufacturing of Nanocellulose Aerogels with Structure-Oriented Thermal, Mechanical, and Biological Properties
Additive manufacturing (AM) is widely recognized as a versatile tool for achieving complex geometries and customized functionalities in designed materials. However, the challenge lies in selecting an appropriate AM method that simultaneously realizes desired microstructures and macroscopic geometrical designs in a single sample. This study presents a direct ink writing method for 3D printing intricate, high-fidelity macroscopic cellulose aerogel forms. The resulting aerogels exhibit tunable anisotropic mechanical and thermal characteristics by incorporating fibers of different length scales into the hydrogel inks. The alignment of nanofibers significantly enhances mechanical strength and thermal resistance, leading to higher thermal conductivities in the longitudinal…
Chemiresistive Sensor for Enhanced CO2 Gas Monitoring
Carbon dioxide (CO2) gas sensing and monitoring have gained prominence for applications such as smart food packaging, environmental monitoring of greenhouse gases, and medical diagnostic tests. Although CO2 sensors based on metal oxide semiconductors are readily available, they often suffer from limitations such as high operating temperatures (>250 °C), limited response at elevated humidity levels (>60% RH), bulkiness, and limited selectivity. In this study, we designed a chemiresistive sensor for CO2 detection to overcome these problems. The sensing material of this sensor consists of a CO2 switchable polymer based on N-3-(dimethylamino)propyl methacrylamide (DMAPMAm) and methoxyethyl methacrylate (MEMA) [P(D-co-M)], and diethylamine.…
PDMS Microspheres as Rheological Additives for PDMS-Based DIW Inks
Direct Ink Writing holds vast potential for additive manufacturing with broad material compatibility as long as appropriate rheological properties are exhibited by the material of choice. Additives are often included to attain the desired rheological properties for printing, but these same additives can yield products with undesirable mechanical properties. For example, silica fillers are used to create silicone inks appropriate for printing but yield cured structures that are too stiff. In this work, we investigate the applicability of PDMS microspheres as a rheological and thixotropic additive for PDMS based DIW inks. We utilize a facile oil-in-water emulsion method to reproducibly…