3D Bioplotter Research Papers

Displaying all papers by H. Li (7 results)

3D-printed porous functional composite scaffolds with polydopamine decoration for bone regeneration

Regenerative Biomaterials 2023 Volume 10, Article rbad062

Large size bone defects affect human health and remain a worldwide health problem that needs to be solved immediately. 3D printing technology has attracted substantial attention for preparing penetrable multifunctional scaffolds to promote bone reconditioning and regeneration. Inspired by the spongy structure of natural bone, novel porous degradable scaffolds have been printed using polymerization of lactide and caprolactone (PLCL) and bioactive glass 45S5 (BG), and polydopamine (PDA) was used to decorate the PLCL/BG scaffolds. The physicochemical properties of the PLCL/BG and PLCL/BG/PDA scaffolds were measured, and their osteogenic and angiogenic effects were characterized through a series of experiments both in…

Osteosarcoma progression in biomimetic matrix with different stiffness: Insights from a three-dimensional printed gelatin methacrylamide hydrogel

International Journal of Biological Macromolecules 2023 Volume 252, Article 126391

Recent studies on osteosarcoma and matrix stiffness are still mostly performed in a 2D setting, which is distinct from in vivo conditions. Therefore, the results from the 2D models may not reflect the real effect of matrix stiffness on cell phenotype. Here, we employed a 3D bioprinted osteosarcoma model, to study the effect of matrix stiffness on osteosarcoma cells. Through density adjustment of GelMA, we constructed three osteosarcoma models with distinct matrix stiffnesses of 50, 80, and 130 kPa. In this study, we found that osteosarcoma cells proliferated faster, migrated more actively, had a more stretched morphology, and a lower…

Drug-loaded zeolite imidazole framework-8-functionalized bioglass scaffolds with antibacterial activity for bone repair

Ceramics International 2022 Volume 48, Issue 5, Pages 6890-6898

Bacterial infection is an important challenge when repairing bone defects with implant materials. The development of functional scaffolds with an intelligent antibacterial function that can be used for bone repair are of great significance. In this study, we used vancomycin (VAN) as a model antibiotic drug and proposed the fabrication of VAN-loaded zeolite imidazole framework-8-functionalized bioglass (ZIF-8@VAN@BG) scaffolds with a pH-responsive antibacterial effect for use in potentially infected bone repair applications. The physicochemical properties, in vitro biological properties and antibacterial properties of the scaffolds were studied. The results showed that the ZIF-8@VAN@BG scaffolds had a 3D porous structure and exhibited…

Multi-omics analysis based on 3D-bioprinted models innovates therapeutic target discovery of osteosarcoma

Bioactive Materials 2022 Volume 18, Pages 459-470

Current in vitro models for osteosarcoma investigation and drug screening, including two-dimensional (2D) cell culture and tumour spheroids (i.e. cancer stem-like cells), lack extracellular matrix (ECM). Therefore, results from traditional models may not reflect real pathological processes in genuine osteosarcoma histological structures. Here, we report a three-dimensional (3D) bioprinted osteosarcoma model (3DBPO) that contains osteosarcoma cells and shrouding ECM analogue in a 3D frame. Photo-crosslinkable bioinks composed of gelatine methacrylamide and hyaluronic acid methacrylate mimicked tumour ECM. We performed multi-omics analysis, including transcriptomics and DNA methylomics, to determine differences between the 3DBPO model and traditional models. Compared with 2D models…

Multi-compartment Organ-on-a-Chip Based on Electrospun Nanofiber Membrane as In Vitro Jaundice Disease Model

Advanced Fiber Materials 2021 Volume 3, Pages 383–393

Organ-on-a-chip (OOC) is now becoming a potential alternative to the classical preclinical animal models, which reconstitutes in vitro the basic function of specific human tissues/organs and dynamically simulates physiological or pathological activities in tissue and organ level. Despite of the much progress achieved so far, there is still an urgent need to explore new biomaterials to construct a reliable and efficient tissue–tissue interface and a general fabrication strategy to expand from single-organ OOC to multi-organ OOC in an easy manner. In this paper, we propose a novel strategy to prepare double-compartment organ-on-a-chip (DC-OOC) using electrospun poly(l-lactic acid)/collagen I (PLLA/Col I)…

Bioprinting of an osteocyte network for biomimetic mineralization

Biofabrication 2020 Volume 12, Number 4, Article 045013

Osteocytes, essential regulators of bone homeostasis, are embedded in the mineralized bone matrix. Given the spatial arrangement of osteocytes, bioprinting represents an ideal method to biofabricate a 3D osteocyte network with a suitable surrounding matrix similar to native bone tissue. Here, we reported a 3D bioprinted osteocyte-laden hydrogel for biomimetic mineralization in vitro with exceptional shape fidelity, a high cell density (107 cells per ml) and high cell viability (85–90%). The bioinks were composed of biomimetic modified biopolymers, namely, gelatine methacrylamide (GelMA) and hyaluronic acid methacrylate (HAMA), with or without type I collagen. The osteocyte-laden constructs were printed and cultured…

Elastic polyurethane bearing pendant TGF-β1 affinity peptide for potential tissue engineering applications

Materials Science and Engineering: C 2017 Volume 83, Pages 67-77

Highlights * An elastic degradable polyurethane (PU) bearing pendent HSNGLPL peptide for TGF-β1 affinity binding mimics the extracellular matrix function to retain and release growth factors. * The pendant peptide sequence presented a high affinity for TGF-β1 retaining, even when the surface was pre-coated with other proteins. * The synthesized PU shows good extrusion processing ability and can be printed into 3D scaffolds with designed porous structures. * The released TGF-β1 from surface conjugating was tested by differentiation guiding experiments of ATDC5 cells in vitro and the regeneration of the surrounding tissue after implanting in vivo.