3D Bioplotter Research Papers
Bioprinted scaffolds assembled as synthetic skin grafts by natural hydrogels containing fibroblasts and bioactive agents
Hydrogel skin grafts provide a moist environment and act as a regenerative template to the newly formed tissue. In this study, we developed 3D-bio-printed hydrogels using methacrylated pectin and methacrylated gelatin together with an antibacterial agent (curcumin), a bioactive agent (Vitamin-C) and fibroblast cells. Curcumin release was almost 10 times higher at pH 7.4 than pH 5.0, and it demonstrated antimicrobial affinity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The developed 3D-bio-printed hydrogels containing cells and bioactive agents demonstrated high cell viability, cell proliferation, and collagen production, and are promising skin graft candidates for the treatment of full-thickness problematic…
3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA
Fabrication of scaffolds using polymers and then cell seeding is a routine protocol of tissue engineering applications. Synthetic polymers have adequate mechanical properties to substitute for some bone tissue, but they are generally hydrophobic and have no specific cell recognition sites, which leads to poor cell affinity and adhesion. Some natural polymers, have high cell affinity but are mechanically weak and do not have the strength required as a bone supporting material. In the present study, 3D printed hybrid scaffolds were fabricated using PCL and GelMA carrying dental pulp stem cells (DPSCs), which is printed in the gaps between the…
Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells
The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300 °C. In vitro tests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue…
An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects
The hypothesis of this study was that the extent of bone regeneration could be enhanced by using scaffolds with appropriate geometry, and that such an effect could be further increased by mimicking the natural timing of appearance of bone morphogenetic proteins BMP-2 and BMP-7 after fracture. Bioplotted poly(ε-caprolactone) (PCL) disks with four different fibre organizations were used to study the effect of 3D scaffold architecture on the healing of bone defects in a rat pelvis model. Moreover, one PCL construct was further modified by introducing a nanoparticulate sequential BMP-2/BMP-7 delivery system into this scaffold. Scaffolds and functionalized construct along with…
A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects
The importance of provision of growth factors in the engineering of tissues has long been shown to control the behavior of the cells within the construct and several approaches were applied toward this end. In nature, more than one type of growth factor is known to be effective during the healing of tissue defects and their peak concentrations are not always simultaneous. One of the most recent strategies includes the delivery of a combination of growth factors with the dose and timing to mimic the natural regeneration cascade. The sequential delivery of bone morphogenetic proteins BMP-2 and BMP-7 which are…
Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration
The aim of this study was to develop 3-D tissue engineered constructs that mimic the in vivo conditions through a self-contained growth factor delivery system. A set of nanoparticles providing the release of BMP-2 initially followed by the release of BMP-7 were incorporated in poly(ε-caprolactone) scaffolds with different 3-D architectures produced by 3-D plotting and wet spinning. The release patterns were: each growth factor alone, simultaneous, and sequential. The orientation of the fibers did not have a significant effect on the kinetics of release of the model protein BSA; but affected proliferation of bone marrow mesenchymal stem cells. Cell proliferation…
3D Plotted PCL Scaffolds for Stem Cell Based Bone Tissue Engineering
The ability to control the architecture and strength of a bone tissue engineering scaffold is critical to achieve a harmony between the scaffold and the host tissue. Rapid prototyping (RP) technique is applied to tissue engineering to satisfy this need and to create a scaffold directly from the scanned and digitized image of the defect site. Design and construction of complex structures with different shapes and sizes, at micro and macro scale, with fully interconnected pore structure and appropriate mechanical properties are possible by using RP techniques. In this study, RP was used for the production of poly(ε-caprolactone) (PCL) scaffolds.…