3D Bioplotter Research Papers
Double-network structure sponge with enhanced mechanical properties, procoagulant potential, and 3D printability for acute hemorrhage
In pre-hospital care, achieving rapid and effective hemostasis for arterial rupture and visceral perforation wounds remains a critical challenge. Herein, we have developed a macroporous sponge with double-network structure using foaming technique, chemical and physical crosslinking reactions, and lyophilization. The prepared sponge not only demonstrates outstanding water absorption and water-triggered shape recovery capacity, but also exhibits significantly enhanced mechanical properties due to the construction of double-network structure. Simultaneously, the sponge shortens blood clotting time (from 1354.3 ± 41 s to 473.0 ± 28 s) by concentrating blood components and regulating coagulation pathways. Particularly, the sponge possesses excellent 3D printability and…
Advancing knee cartilage repair with 3D printed GelMA/SF/Haps composite hydrogels for enhanced chondrocyte regeneration
The repair of cartilage injuries and defects in the knee presents a significant challenge in the field of human joint surgery. A promising solution involves the synergy of three-dimensional printing and articular cartilage tissue engineering. This research primarily focuses on the formulation of composite hydrogels comprising gelatin methacryloyl (GelMA), silk fibroin (SF) and hydroxyapatites (Haps), with a thorough examination of their morphology and mechanical properties. We also conducted tests on stacking height and grid area to assess the 3D printability of GM/SF/Haps inks. To evaluate the suitability of GM/SF/Haps scaffolds in cartilage regeneration, we performed 2D culture with mouse chondrocytes…
Ink Based on the Tunable Swollen Microsphere for a 3D Printing Hydrogel with Broad-Range Mechanical Properties
The development of the effective 3D printing strategy for diverse functional monomers is still challenging. Moreover, the conventional 3D printing hydrogels are usually soft and fragile due to the lack of an energy dissipation mechanism. Herein, a microsphere mediating ink preparation strategy is developed to provide tailored rheological behavior for various monomer direct ink writings. The chitosan microspheres are used as an exemplary material due to their tunable swelling ratio under the acid-drived electrostatic repulsion of the protonated amino groups. The rheological behaviors of the swollen chitosan microsphere (SCM) are independent on the monomer types, and various functional secondary polymers…
A 3D-Bioprinted Functional Module Based on Decellularized Extracellular Matrix Bioink for Periodontal Regeneration
Poor fiber orientation and mismatched bone–ligament interface fusion have plagued the regeneration of periodontal defects by cell-based scaffolds. A 3D bioprinted biomimetic periodontal module is designed with high architectural integrity using a methacrylate gelatin/decellularized extracellular matrix (GelMA/dECM) cell-laden bioink. The module presents favorable mechanical properties and orientation guidance by high-precision topographical cues and provides a biochemical environment conducive to regulating encapsulated cell behavior. The dECM features robust immunomodulatory activity, reducing the release of proinflammatory factors by M1 macrophages and decreasing local inflammation in Sprague Dawley rats. In a clinically relevant critical-size periodontal defect model, the bioprinted module significantly enhances the…
Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold
Critical oral-maxillofacial bone defects, damaged by trauma and tumors, not only affect the physiological functions and mental health of patients but are also highly challenging to reconstruct. Personalized biomaterials customized by 3D printing technology have the potential to match oral-maxillofacial bone repair and regeneration requirements. Laponite (LAP) nanosilicates have been added to biomaterials to achieve biofunctional modification owing to their excellent biocompatibility and bioactivity. Herein, porous nanosilicate-functionalized polycaprolactone (PCL/LAP) was fabricated by 3D printing technology, and its bioactivities in bone regeneration were investigated in vitro and in vivo. In vitro experiments demonstrated that PCL/LAP exhibited good cytocompatibility and enhanced the…