3D Bioplotter Research Papers
Harnessing decellularised extracellular matrix microgels into modular bioinks for extrusionbased bioprinting with good printability and high post-printing cell viability
The printability of bioink and post-printing cell viability is crucial for extrusion-based bioprinting. A proper bioink not only provides mechanical support for structural fidelity, but also serves as suitable three-dimensional (3D) microenvironment for cell encapsulation and protection. In this study, a hydrogel-based composite bioink was developed consisting of gelatin methacryloyl (GelMA) as the continuous phase and decellularised extracellular matrix microgels (DMs) as the discrete phase. A flow-focusing microfluidic system was employed for the fabrication of cell-laden DMs in a high-throughput manner. After gentle mixing of the DMs and GelMA, both rheological characterisations and 3D printing tests showed that the resulting…
Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering
Utilizing tissue-specific extracellular matrices (ECMs) is vital for replicating the composition of native tissues and developing biologically relevant biomaterials. Human- or animal-derived donor tissues and organs are the current gold standard for the source of these ECMs. To overcome the several limitations related to these ECM sources, including the highly limited availability of donor tissues, cell-derived ECM offers an alternative approach for engineering tissue-specific biomaterials, such as bioinks for three-dimensional (3D) bioprinting. 3D bioprinting is a state-of-the-art biofabrication technology that addresses the global need for donor tissues and organs. In fact, there is a vast global demand for human donor…
Silk fibroin, gelatin, and human placenta extracellular matrix-based composite hydrogels for 3D bioprinting and soft tissue engineering
Background There is a great clinical need and it remains a challenge to develop artificial soft tissue constructs that can mimic the biomechanical properties and bioactivity of natural tissue. This is partly due to the lack of suitable biomaterials. Hydrogels made from human placenta offer high bioactivity and represent a potential solution to create animal-free 3D bioprinting systems that are both sustainable and acceptable, as placenta is widely considered medical waste. A combination with silk and gelatin polymers can bridge the biomechanical limitations of human placenta chorion extracellular matrix hydrogels (hpcECM) while maintaining their excellent bioactivity. Method In this…
Formulation of Dermal Tissue Matrix Bioink by a Facile Decellularization Method and Process Optimization for 3D Bioprinting toward Translation Research
Decellularized extracellular matrices (ECMs) are being extensively used for tissue engineering purposes and detergents are predominantly used for this. A facile detergent-free decellularization method is developed for dermal matrix and compared it with the most used detergent-based decellularization methods. An optimized, single-step, cost-effective Hypotonic/Hypertonic (H/H) Sodium Chloride (NaCl) solutions-based method is employed to decellularize goat skin that resulted in much higher yield than other methods. The ECM composition, mechanical property, and cytocompatibility are evaluated and compared with other decellularization methods. Furthermore, this H/H-treated decellularized dermal ECM (ddECM) exhibits a residual DNA content of <50 ng mg−1 of dry tissue. Moreover, 85.64 ± 3.01% of glycosaminoglycans…
Regional specific tunable meniscus decellularized extracellular matrix (MdECM) reinforced bioink promotes anistropic meniscus regeneration
The healing of meniscus injuries poses a significant challenge, as prolonged failure to heal can lead to osteoarthritis, which presents a therapeutic dilemma in the field of sports medicine. Decellularized extracellular matrix (MdECM) derived from natural meniscus, and the incorporated growth factors have been used for potential fibrochondrocyte induction and meniscus regeneration. However, homogeneous MdECM is difficult to achieve region-specific biomimetic microenvironment for tissue regeneration. In this study, we successfully prepared a region-specific MdECM, which were then mixed with an ultraviolet responsible Gelatin Methacryloyl (GelMA)/hyaluronic acid Methacryloy (HAMA) hydrogel incorporated with bioactive factors, faciliatated a functional region-specific bioink. The 3D…
A 3D-Bioprinted Functional Module Based on Decellularized Extracellular Matrix Bioink for Periodontal Regeneration
Poor fiber orientation and mismatched bone–ligament interface fusion have plagued the regeneration of periodontal defects by cell-based scaffolds. A 3D bioprinted biomimetic periodontal module is designed with high architectural integrity using a methacrylate gelatin/decellularized extracellular matrix (GelMA/dECM) cell-laden bioink. The module presents favorable mechanical properties and orientation guidance by high-precision topographical cues and provides a biochemical environment conducive to regulating encapsulated cell behavior. The dECM features robust immunomodulatory activity, reducing the release of proinflammatory factors by M1 macrophages and decreasing local inflammation in Sprague Dawley rats. In a clinically relevant critical-size periodontal defect model, the bioprinted module significantly enhances the…
Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration
Decellularized extracellular matrix hydrogel (dECM-G) has demonstrated its significant tissue-specificity, high biocompatibility, and versatile utilities in tissue engineering. However, the low mechanical stability and fast degradation are major drawbacks for its application in three-dimensional (3D) printing. Herein, we report a hybrid hydrogel system consisting of dECM-Gs and photocrosslinkable gelatin methacrylate (GelMA), which resulted in significantly improved printability and structural fidelity. These premixed hydrogels retained high bioactivity and tissue-specificity due to their containing dECM-Gs. More specifically, it was realized that the hydrogel containing dECM-G derived from porcine peripheral nerves (GelMA/pDNM-G) effectively facilitated neurite growth and Schwann cell migration from two-dimensional cultured…
The evaluation of a multiphasic 3D-bioplotted scaffold seeded with adipose derived stem cells to repair osteochondral defects in a porcine model
There is a need for the development of effective treatments for focal articular cartilage injuries. We previously developed a multiphasic 3D-bioplotted osteochondral scaffold design that can drive site-specific tissue formation when seeded with adipose-derived stem cells (ASC). The objective of this study was to evaluate this scaffold in a large animal model. Osteochondral defects were generated in the trochlear groove of Yucatan minipigs and repaired with scaffolds that either contained or lacked an electrospun tidemark and were either unseeded or seeded with ASC. Implants were monitored via computed tomography (CT) over the course of 4 months of in vivo implantation and…
Alginate-based tissue-specific bioinks for multi-material 3D-bioprinting of pancreatic islets and blood vessels: A step towards vascularized pancreas grafts
Although allogeneic islet transplantation has been proposed as a therapy for type 1 diabetes, its success rate remains low. Disruption of both extracellular matrix (ECM) and dense vascular network during islets isolation are referred to as some of the main causes of their poor engraftment. Therefore, the recapitulation of the native pancreatic microenvironment and its prompt revascularization should be beneficial for long-term islet survival. In this study, we developed novel bioinks suitable for the microfluidic-assisted multi-material biofabrication of 3D porous pancreatic and vascular structures. The tissue-specific bioactivity was introduced by blending alginate either with pancreatic decellularized extracellular matrix powder (A_ECM)…
Engineering hiPSC-CM and hiPSC-EC laden 3D nanofibrous splenic hydrogel for improving cardiac function through revascularization and remuscularization in infarcted heart
Cell therapy has been a promising strategy for cardiac repair after myocardial infarction (MI), but a poor ischemic environment and low cell delivery efficiency remain significant challenges. The spleen serves as a hematopoietic stem cell niche and secretes cardioprotective factors after MI, but it is unclear whether it could be used for human pluripotent stem cell (hiPSC) cultivation and provide a proper microenvironment for cell grafts against the ischemic environment. Herein, we developed a splenic extracellular matrix derived thermoresponsive hydrogel (SpGel). Proteomics analysis indicated that SpGel is enriched with proteins known to modulate the Wnt signaling pathway, cell-substrate adhesion, cardiac…
Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing
Improving the printability of pure, decellularized extracellular matrix (dECM) bio-ink without altering its physiological components has been a challenge in three-dimensional (3D) cell printing. To improve the printability of the bio-ink, we first investigated the digestion process of the powdered dECM material obtained from porcine tendons. We manifested the digestion process of tendon derived dECM powders, which includes dissolution, gelatinization and solubilization. After a short dissolution period (around 10 min), we observed a ‘High viscosity slurry’ status (3 h) of the dECM precursors, i.e. the gelatinization process, followed by the solubilization processes, i.e. a ‘Medium viscosity slurry’ period (12 h)…
Cell Bioprinting: The 3D-Bioplotter™ Case
The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with…
Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels
Three-dimensional (3D) printing of decellularized extracellular matrix (dECM) hydrogels is a promising technique for regenerative engineering. 3D-printing enables the reproducible and precise patterning of multiple cells and biomaterials in 3D, while dECM has high organ-specific bioactivity. However, dECM hydrogels often display poor printability on their own and necessitate additives or support materials to enable true 3D structures. In this study, we used a sacrificial material, 3D-printed Pluronic F-127, to serve as a platform into which dECM hydrogel can be incorporated to create specifically designed structures made entirely up of dECM. The effects of 3D dECM are studied in the context…