3D Bioplotter Research Papers
Optimization of the modular reinforced bone scaffold for customized alveolar bone defects
A modular reinforced bone scaffold with enhanced mechanical properties has recently been developed by our group. It includes: 1) A load-bearing module: a skeleton which is made of a slowly degradable material, undertaking mechanical necessities of the scaffold, and 2) A bio-reactive module: a porous and biodegradable component undertaking biological necessities of the scaffold. The load-bearing module is placed into the bio-reactive module to reinforce it. This paper is dedicated to optimizing the load-bearing module for a certain customized alveolar bone defect. More specifically, a 3D-printed skeleton, made of polycaprolactone (PCL), is optimized based on the boundary conditions of the…
The Effect of Collagen-I Coatings of 3D Printed PCL Scaffolds for Bone Replacement on Three Different Cell Types
Introduction The use of scaffolds in tissue engineering is becoming increasingly important as solutions need to be found to preserve human tissues such as bone or cartilage. Various factors, including cells, biomaterials, cell and tissue culture conditions, play a crucial role in tissue engineering. The in vivo environment of the cells exerts complex stimuli on the cells, thereby directly influencing cell behavior, including proliferation and differentiation. Therefore, to create suitable replacement or regeneration procedures for human tissues, the conditions of the cells’ natural environment should be well mimicked. Therefore, current research is trying to develop 3-dimensional scaffolds (scaffolds) that can…
Three-Dimensional Printing of Calcium Carbonate/Hydroxyapatite Scaffolds at Low Temperature for Bone Tissue Engineering
Three-dimensional (3D) printing technology has been applied to fabricate bone tissue engineering scaffolds for a wide range of materials with precisely control over scaffold structures. Coral is a potential bone repair and bone replacement material. Due to the natural source limitation of coral, we developed a fabrication protocol for 3D printing of calcium carbonate (CaCO3) nanoparticles for coral replacement in the application of bone tissue engineering. Up to 80% of CaCO3 nanoparticles can be printed with high resolution using poly-l-lactide as a blender. The scaffolds were subjected to a controlled hydrothermal process for incomplete conversion of carbonate to phosphate to…
Cultivation of hierarchical 3D scaffolds inside a perfusion bioreactor: scaffold design and finite-element analysis of fluid flow
The use of porous 3D scaffolds for the repair of bone nonunion and osteoporotic bone is currently an area of great interest. Using a combination of thermally-induced phase separation (TIPS) and 3D-plotting (3DP), we have generated hierarchical 3DP/TIPS scaffolds made of poly(lactic-co-glycolic acid) (PLGA) and nanohydroxyapatite (nHA). A full factorial design of experiments was conducted, in which the PLGA and nHA compositions were varied between 6‒12% w/v and 10‒40% w/w, respectively, totaling 16 scaffold formulations with an overall porosity ranging between 87%‒93%. These formulations included an optimal scaffold design identified in our previous study. The internal structures of the scaffolds…
Tunable Microgel-Templated Porogel (MTP) Bioink for 3D Bioprinting Applications
Micropores are essential for tissue engineering to ensure adequate mass transportation for embedded cells. Despite the considerable progress made by advanced 3D bioprinting technologies, it remains challenging to engineer micropores of 100 µm or smaller in cell-laden constructs. Here, a microgel-templated porogel (MTP) bioink platform is reported to introduce controlled microporosity in 3D bioprinted hydrogels in the presence of living cells. Templated gelatin microgels are fabricated with varied sizes (≈10, ≈45, and ≈100 µm) and mixed with photo-crosslinkable formulations to make composite MTP bioinks. The addition of microgels significantly enhances the shear-thinning and self-healing viscoelastic properties and thus the printability of bioinks…
Spatial alignment of 3D printed scaffolds modulates genotypic expression in pre-osteoblasts
3D printing, an advent from rapid prototyping technology is emerging as a suitable solution for various regenerative engineering applications. In this study, blended gelatin-sodium alginate 3D printed scaffolds with different pore geometries were developed by altering the spatial alignment of even layered struts in the scaffolds. A significant difference in compression modulus and osteogenic expression due to the difference in spatial printing was demonstrated. Pore geometry was found to be more dominant than the compressive modulus of the scaffold in regulating osteogenic gene expression. A shift in pore geometry by at least 45° was critical for significant increase in osteogenic…
Bioprinting of an osteocyte network for biomimetic mineralization
Osteocytes, essential regulators of bone homeostasis, are embedded in the mineralized bone matrix. Given the spatial arrangement of osteocytes, bioprinting represents an ideal method to biofabricate a 3D osteocyte network with a suitable surrounding matrix similar to native bone tissue. Here, we reported a 3D bioprinted osteocyte-laden hydrogel for biomimetic mineralization in vitro with exceptional shape fidelity, a high cell density (107 cells per ml) and high cell viability (85–90%). The bioinks were composed of biomimetic modified biopolymers, namely, gelatine methacrylamide (GelMA) and hyaluronic acid methacrylate (HAMA), with or without type I collagen. The osteocyte-laden constructs were printed and cultured…
Accelerated vascularization of tissue engineering constructs in vivo by preincubated co-culture of aortic fragments and osteoblasts
There is an urgent critical need for the development of clinically relevant tissue-engineered large bone substitutes that can promote early vascularization after transplantation. To promote rapid blood vessel growth in the engineered tissue, we preincubated aortic fragments, as well as, co-cultures of aortic fragments and osteoblast-like cells in matrigel-filled PLGA scaffolds before implantation into the dorsal skinfold chambers of balb/c mice. Despite an acceptable and low inflammatory response, preincubated aortic fragments accelerate early angiogenesis of tissue-engineered constructs; the angiogenesis was found to occur faster than that observed in previous studies. Thus, the time-period for achieving a denser microvascular network could…
The effect of calcium sulfate incorporation on physiochemical and biological properties of 3D-printed mesoporous calcium silicate cement scaffolds
Development of 3D porous scaffolds with proper mechanical strength is crucial in bone tissue engineering. In this study, calcium sulfate hemihydrate (CSH) cement was functionally incorporated into mesoporous calcium silicate (MCS) through a 3D printing technique in order to improve the scaffold strength. Compared to printed MCS scaffolds, the characterizations revealed that 20% CSH incorporation had enhanced their compressive strength by 2 times via 4 weeks’ hydration. Furthermore, CSH incorporation prevented the fast pH value rise and achieved a balanced degradation rate. SEM observations showed a good apatite formation on the surfaces of both MCS and MCS/CSH scaffolds. Cellular experiments…
Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects
The development of a new generation of biomaterials with high osteogenic ability for fast osseointegration with host bone is being intensively investigated. In this study, we have fabricated three-dimensional (3-D) strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds by a 3-D printing technique. Sr-MBG scaffolds showed uniform interconnected macropores (∼400 μm), high porosity (∼70%) and enhanced compressive strength (8.67 ± 1.74 MPa). Using MBG scaffolds as a control, the biological properties of Sr-MBG scaffolds were evaluated by apatite-forming ability, adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteoblast-like cells MC3T3-E1. Furthermore, Sr-MBG scaffolds were used to repair critical-sized rat calvarial…
Decelerated vascularization in tissue-engineered constructs in association with diabetes mellitus in vivo
Aims Rapid blood vessel ingrowth in transplanted tissue engineering constructs is the key factor for successful incorporation, but many potential patients who may use engineered tissues suffer from widespread diseases that limit the capacity of neovascularization (e.g. diabetes). Thus, in vivo vascularization analyses of tissue-engineered constructs in angiogenically affected organisms are required. Methods We therefore investigated the in vivo incorporation of collagen-coated and cell-seeded poly-L-lactide-co-glycolide scaffolds in diabetic B6.BKS(D)-Leprdb/J mice using repetitive intravital fluorescence microscopy over a time period of two weeks. For this purpose, scaffolds were seeded with osteoblast-like or bone marrow mesenchymal stem cells and implanted into the…
Accelerating the early angiogenesis of tissue engineering constructs in vivo by the use of stem cells cultured in matrigel
In tissue engineering research, generating constructs with an adequate extent of clinical applications remains a major challenge. In this context, rapid blood vessel ingrowth in the transplanted tissue engineering constructs is the key factor for successful incorporation. To accelerate the microvascular development in engineered tissues, we preincubated osteoblast-like cells as well as mesenchymal stem cells or a combination of both cell types in Matrigel-filled PLGA scaffolds before transplantation into the dorsal skinfold chambers of balb/c mice. By the use of preincubated mesenchymal stem cells, a significantly accelerated angiogenesis was achieved. Compared with previous studies that showed a decisive increase of…
Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration
In this study, we fabricated strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds with controlled architecture and enhanced mechanical strength using a three-dimensional (3-D) printing technique. The study showed that Sr-MBG scaffolds had uniform interconnected macropores and high porosity, and their compressive strength was ∼170 times that of polyurethane foam templated MBG scaffolds. The physicochemical and biological properties of Sr-MBG scaffolds were evaluated by ion dissolution, apatite-forming ability and proliferation, alkaline phosphatase activity, osteogenic expression and extracelluar matrix mineralization of osteoblast-like cells MC3T3-E1. The results showed that Sr-MBG scaffolds exhibited a slower ion dissolution rate and more significant potential to stabilize the…
Effect of Bioglass on Growth and Biomineralization of SaOS-2 Cells in Hydrogel after 3D Cell Bioprinting
We investigated the effect of bioglass (bioactive glass) on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP), administered as polyP•Ca2+-complex, or silica, or as biosilica that had been enzymatically prepared from ortho-silicate by silicatein. These hydrogels, together with SaOS-2 cells, were bioprinted to computer-designed scaffolds. The results revealed that bioglass (nano)particles, with a size of 55 nm and a molar ratio of SiO2∶CaO∶P2O5 of 55∶40∶5, did not affect the growth of the encapsulated cells. If silica, biosilica, or polyP•Ca2+-complex is co-added to the cell-containing alginate/gelatin…
Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone
Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA) and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA). Evidence has been presented that during the initial phase…
Design and preparation of biocompatible zwitterionic hydroxyapatite
This study reports the design and preparation of zwitterionic nanocrystalline hydroxyapatite (HA) capable of inhibiting bacterial adhesion while allowing osteoblast cell colonization. The surface functionalization of HA powders was carried out by post-synthesis grafting of 3-aminopropyltriethoxysilane (APTES) and carboxyethylsilanetriol sodium salt (CES) as amine and carboxylate precursors, respectively. The successful functionalization of HA surfaces was assessed by elemental chemical analysis, FTIR, 29Si, 31P and 13C solid state CP/MAS NMR and ζ-potential measurements, and the zwitterionic nature of the synthesized HA was proved through the presence of –NH3+/–COO− pairs on the material surfaces. With the aim of evaluating the feasibility of…
Hierarchical Fibrillar Scaffolds Obtained by Non-conventional Layer-By-Layer Electrostatic Self-Assembly
A new application of layer-by-layer assembly is presented, able to create nano/micro fibrils or nanocoatings inside 3D scaffolds using non-fibrillar polyelectrolytes for tissue-engineering applications. This approach shows promise for developing advanced scaffolds with controlled nano/micro environments, and nature and architectures similar to the natural extracellular matrix, leading to improved biological performance.
Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a three‐dimensional fiber deposition method
The mechanical properties of amorphous, degradable, and highly porous poly(lactide-co-caprolactone) structures have been improved by using a 3D fiber deposition (3DF) method. Two designs of 3DF scaffolds, with 45° and 90° layer rotation, were printed and compared with scaffolds produced by a salt-leaching method. The scaffolds had a porosity range from 64% to 82% and a high interconnectivity, measured by micro-computer tomography. The 3DF scaffolds had 8–9 times higher compressive stiffness and 3–5 times higher tensile stiffness than the salt-leached scaffolds. There was a distinct decrease in the molecular weight during printing as a consequence of the high temperature. The…
Prolongated Survival of Osteoblast-Like Cells on Biodegradable Scaffolds by Heat Shock Preconditioning
The implantation of tissue-engineered constructs leads to hypoxic and physical stress to the seeded cells until they were reached by a functional microvascular system. Preconditioning of cells with heat shock induced heat shock proteins, which can support the cells to survive a subsequent episode of stress that would otherwise be lethal. Preconditioning of tissue-engineered constructs resulted in significantly higher number of surviving osteoblast-like cells (OLC). At the 6th and 10th day, angiogenic response was found comparative to poly(L-lactide-co-glycolide) (PLGA) scaffolds vitalized with either unconditioned or preconditioned OLC. However, they were significantly enhanced compared with the nonvitalized collagen-labeled PLGA scaffolds. This…
Accelerated Angiogenic Host Tissue Response to Poly(L-Lactide-co-Glycolide) Scaffolds by Vitalization with Osteoblast-like Cells
Background: Bone substitutes should ideally promote rapid vascularization, which could be accelerated if these substitutes were vitalized by autologous cells. Although adequate engraftment of porous poly(L-lactide-co-glycolide) (PLGA) scaffolds has been demonstrated in the past, it has not yet been investigated how vascularization is influenced by vitalization or, more precisely, by seeding PLGA scaffolds with osteoblast-like cells (OLCs). For this reason, we conducted an in vivo study to assess host angiogenic and inflammatory responses after the implantation of PLGA scaffolds vitalized with isogeneic OLCs. Materials and Methods: OLCs were seeded on collagen-coated PLGA scaffolds that were implanted into dorsal skinfold chambers…
Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects
The aim of this study was to investigate the osteogenic effect of three different cell-seeded 3D-bioplotted scaffolds in a ovine calvarial critical-size defect model. The choice of scaffold-materials was based on their applicability for 3D-bioplotting and respective possibility to produce tailor-made scaffolds for the use in cranio-facial surgery for the replacement of complex shaped boneparts. Scaffold raw-materials are known to be osteoinductive when being cell-seeded [poly(L-lactide-co-glycolide) (PLGA)] or having components with osteoinductive properties as tricalciumphosphate (TCP) or collagen (Col) or chitosan. The scaffold-materials PLGA, TCP/Col, and HYDR (TCP/Col/chitosan) were cell-seeded with osteoblast-like cells whether gained from bone (OLB) or from…
Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo
Implantation of tissue engineering constructs is a promising technique to reconstruct injured tissue. However, after implantation the nutrition of the constructs is predominantly restricted to vascularization. Since cells possess distinct angiogenic potency, we herein assessed whether scaffold vitalization with different cell types improves scaffold vascularization. 32 male balb/c mice received a dorsal skinfold chamber. Angiogenesis, microhemodynamics, leukocyte–endothelial cell interaction and microvascular permeability induced in the host tissue after implantation of either collagen coated poly (l-lactide-co-glycolide) (PLGA) scaffolds (group 4), additionally seeded with osteoblast-like cells (OLCs, group 1), bone marrow mesenchymal stem cells (bmMSCs, group 2) or a combination of OLCs…
Dynamic Co-Seeding of Osteoblast and Endothelial Cells on 3D Polycaprolactone Scaffolds for Enhanced Bone Tissue Engineering
Tissue engineered scaffolds must have an organized and repeatable microstructure which enables cells to assemble in an ordered matrix that allows adequate nutriental perfusion. In this work, to evaluate the reciprocal cell interactions of endothelial and osteoblast-like cells, human osteoblast-like cells (MG63) and Human Umbilical Vein Endothelial Cells (HUVEC) were co-seeded onto 3D geometrically controlled porous poly(ε-caprolactone) (PCL) and cultured by means of a rotary cell culture system (RCCS-4DQ). In our dynamic co-culture system, the lack of significant enhancement of osteoblast ALP activity and ECM production indicated that the microgravity conditions of the rotary system affected the cells by favoring…
Comparative in vitro study of the cell proliferation of ovine and human osteoblast‐like cells on conventionally and rapid protot yping produced scaffolds tailored for application as potential bone replacement material
Reconstruction of bone defects in the field of craniomaxillofacial surgery is a relevant problem. In regenerative medicine, autologous bone is not available sufficiently. The full replacement of autologous bone grafts is required. A promising research field is the bone engineering. Especially the application of rapid prototyping (RP) enables new perspectives concerning the scaffold design. The aim of the study was to compare scaffolds produced by RP-technology (native and plasma-coated PLGA-scaffolds) with conventionally produced scaffolds (agar plates with hydroxyapatite and hyaluronic acid coated agar plates with hydroxyapatite) relating to proliferation, adhesion, and morphology of osteoblasts to get knowledge about the application…
Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment
Three-dimensional (3D) fiber deposition (3DF), a rapid prototyping technology, was successfully directly applied to produce novel 3D porous Ti6Al4V scaffolds with fully interconnected porous networks and highly controllable porosity and pore size. A key feature of this technology is the 3D computer-controlled fiber depositing of Ti6Al4V slurry at room temperature to produce a scaffold, consisting of layers of directionally aligned Ti6Al4V fibers. In this study, the Ti6Al4V slurry was developed for the 3D fiber depositing process, and the parameters of 3D fiber depositing were optimized. The experimental results show how the parameters influence the structure of porous scaffold. The potential…