3D Bioplotter Research Papers

Displaying all papers about Tendon Regeneration (6 results)

Three-Dimensional Bioprinting of a Structure-, Composition-, and Mechanics-Graded Biomimetic Scaffold Coated with Specific Decellularized Extracellular Matrix to Improve the Tendon-to-Bone Healing

ACS Applied Materials & Interfaces 2023 Volume 15, Issue 24, Pages 28964-28980

Healing of a damaged tendon-to-bone enthesis occurs through the formation of fibrovascular scar tissue with greatly compromised histological and biomechanical properties instead of the regeneration of a new enthesis due to the lack of graded tissue-engineering zones in the interface during the healing process. In the present study, a structure-, composition-, and mechanics-graded biomimetic scaffold (GBS) coated with specific decellularized extracellular matrix (dECM) (GBS-E) aimed to enhance its cellular differentiation inducibilities was fabricated using a three-dimensional (3-D) bioprinting technique. In vitro cellular differentiation studies showed that from the tendon-engineering zone to the bone-engineering zone in the GBS, the tenogenic differentiation…

3D bioprinting of multilayered scaffolds with spatially differentiated ADMSCs for rotator cuff tendon-to-bone interface regeneration

Applied Materials Today 2022 Volume 27, Article 101510

Regeneration of the gradient structure of the tendon-to-bone interface is still a significant clinical challenge. This study reports a novel therapeutic method combining three-dimensional (3D) bioprinting and melt electrospinning writing techniques to regenerate a functional tendon-to-bone interface. We generated biomimetic multilayered scaffolds with 3D-bioprinted pre-differentiated autologous adipose-derived mesenchymal stem cells (ADMSC), which recapitulated compositional and cellular structures of the interface. The hydrogel-based bioinks offered high cell viability and proliferative capability for rabbit ADMSCs. The hydrogels with pre-differentiated (into tenogenic, chondrogenic, and osteogenic lineages) or undifferentiated rabbit ADMSCs were 3D-bioprinted into zonal-specific constructs to mimic the structure of the tendon-to-bone interface.…

Remote triggering of TGF-β/Smad2/3 signaling in human adipose stem cells laden on magnetic scaffolds synergistically promotes tenogenic commitmen

Acta Biomaterialia 2020 Volume 113, Pages 488-500

Injuries affecting load bearing tendon tissues are a significant clinical burden and efficient treatments are still unmet. Tackling tendon regeneration, tissue engineering strategies aim to develop functional substitutes that recreate native tendon milieu. Tendon mimetic scaffolds capable of remote magnetic responsiveness and functionalized magnetic nanoparticles (MNPs) targeting cellular mechanosensitive receptors are potential instructive tools to mediate mechanotransduction in guiding tenogenic responses. In this work, we combine magnetically responsive scaffolds and targeted Activin A type II receptor in human adipose stem cells (hASCs), under alternating magnetic field (AMF), to synergistically facilitate external control over signal transduction. The combination of remote triggering…

Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering

Journal of Orthopaedic Translation 2020 Volume 23, Pages 89-100

Background The anatomical properties of the enthesis of the rotator cuff are hardly regained during the process of healing. The tendon-to-bone interface is normally replaced by fibrovascular tissue instead of interposition fibrocartilage, which impairs biomechanics in the shoulder and causes dysfunction. Tissue engineering offers a promising strategy to regenerate a biomimetic interface. Here, we report heterogeneous tendon-to-bone interface engineering based on a 3D-printed multiphasic scaffold. Methods A multiphasic poly(ε-caprolactone) (PCL)–PCL/tricalcium phosphate–PCL/tricalcium phosphate porous scaffold was manufactured using 3D printing technology. The three phases of the scaffold were designed to mimic the graded tissue regions in the tendon-to-bone interface—tendon, fibrocartilage, and…

The application of BMP-12-overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair

International Journal of Biological Macromolecules 2019 Volume 138, Pages 79-88

This study investigates if the application of bone marrow-derived mesenchymal stem cells (BM-MSCs) loaded 3D-printed scaffolds could improve rotator cuff repair. The polylactic-co-glycolic acid (PLGA) scaffolds were fabricated by 3D print technology. Rabbit BM-MSCs were transfected with a recombinant adenovirus encoding bone morphogenic protein 12 (BMP-12). The effect of BM-MSCs loaded PLGA scaffolds on tendon-bone healing was assessed by biomechanical testing and histological analysis in a rabbit rotator cuff repair model. We found that the PLGA scaffolds had good biocompatible and biodegradable property. Overexpression of BMP-12 increased the mRNA and protein expression of tenogenic genes in BM-MSCs cultured with DMEM…

Exploring the Potential of Starch/Polycaprolactone Aligned Magnetic Responsive Scaffolds for Tendon Regeneration

Advanced Healthcare Materials 2016 Volume 5, Issue 2, pages 213–222

The application of magnetic nanoparticles (MNPs) in tissue engineering (TE) approaches opens several new research possibilities in this field, enabling a new generation of multifunctional constructs for tissue regeneration. This study describes the development of sophisticated magnetic polymer scaffolds with aligned structural features aimed at applications in tendon tissue engineering (TTE). Tissue engineering magnetic scaffolds are prepared by incorporating iron oxide MNPs into a 3D structure of aligned SPCL (starch and polycaprolactone) fibers fabricated by rapid prototyping (RP) technology. The 3D architecture, composition, and magnetic properties are characterized. Furthermore, the effect of an externally applied magnetic field is investigated on…