3D Bioplotter Research Papers

Displaying 10 latest papers (801 papers in the database)

Comparative dissolution studies of 3D-printed inserts in a novel biopharmaceutical bladder model

International Journal of Pharmaceutics 2022 Volume 624, Article 121984

Urinary tract disorders come at great discomfort to the patients suffering from them. To treat them, several potent drug substances are available but unfortunately, systemic drug therapy often comes along with undesired adverse effects. Previous work has therefore been conducted aiming at a local drug release in the urinary bladder. However, whether a therapeutically relevant drug concentration may be reached at the target site is not easy to determine when applying common compendial dissolution methods. Therefore, the aim of this study was to develop a biorelevant dissolution model able to take physiological conditions into consideration, i.e. urine flow rates, urination…

Development of sustained-release drug-loaded intravesical inserts via semi-solid micro-extrusion 3D-printing for bladder targeting

International Journal of Pharmaceutics 2022 Volume 622, Article 121849

Discontinued treatment and non-adherence are oftentimes weaknesses of common first-line drug therapy against bladder conditions due to their negative side-effects. To overcome these limitations and increase patients’ quality of life, intravesical therapies are continuously being explored. 3D-printing offers the possibility of freely tailoring drug delivery systems to manufacture indwelling devices that may administer drugs locally over an extended time and avoiding frequently repeated administrations while minimizing systemic side-effects. In the present work, pressure-assisted micro syringe printing has been used to develop flexible drug-loaded inserts applicable via common urinary catheter that can remain up to several weeks inside the urinary bladder.…

3D-printed composite scaffold with anti-infection and osteogenesis potential against infected bone defects

RSC Advances 2022 Volume 12, Pages 11008-11020

In the field of orthopedics, an infected bone defect is a refractory disease accompanied by bone infection and defects as well as aggravated circulation. There are currently no personalized scaffolds that can treat bone infections using local stable and sustained-release antibiotics while providing mechanical support and bone induction to promote bone repair in the process of absorption in vivo. In our previous study, rifampicin/moxifloxacin-poly lactic-co-glycolic acid (PLGA) microspheres were prepared and tested for sustained release and antibacterial activity. The composite scaffold of poly-L-lactic acid (PLLA)/Pearl had a positive effect on mechanics supports and promoted osteogenesis. Therefore, in this study, the…

Surface-Modified Polypyrrole-Coated PLCL and PLGA Nerve Guide Conduits Fabricated by 3D Printing and Electrospinning

Biomacromolecules 2022 Volume 23, Issue 11, Pages 4532-4546

The efficiency of nerve guide conduits (NGCs) in repairing peripheral nerve injury is not high enough yet to be a substitute for autografts and is still insufficient for clinical use. To improve this efficiency, 3D electrospun scaffolds (3D/E) of poly(l-lactide-co-ε-caprolactone) (PLCL) and poly(l-lactide-co-glycolide) (PLGA) were designed and fabricated by the combination of 3D printing and electrospinning techniques, resulting in an ideal porous architecture for NGCs. Polypyrrole (PPy) was deposited on PLCL and PLGA scaffolds to enhance biocompatibility for nerve recovery. The designed pore architecture of these “PLCL-3D/E” and “PLGA-3D/E” scaffolds exhibited a combination of nano- and microscale structures. The mean…

Functionalized Cellulose Nanocrystals as Active Reinforcements for Light-Actuated 3D-Printed Structures

ACS Nano 2022 Volume 16, Issue 11, Pages 18210-18222

Conventional manufacturing techniques allow the production of photoresponsive cellulose nanocrystals (CNC)-based composites that can reversibly modify their optical, mechanical, or chemical properties upon light irradiation. However, such materials are often limited to 2D films or simple shapes and do not benefit from spatial tailoring of mechanical properties resulting from CNC alignment. Herein, we propose the direct ink writing (DIW) of 3D complex structures that combine CNC reinforcement effects with photoinduced responses. After grafting azobenzene photochromes onto the CNC surfaces, up to 15 wt % of modified nanoparticles can be introduced into a polyurethane acrylate matrix. The influence of CNC on…

A Refined Hot Melt Printing Technique with Real-Time CT Imaging Capability

Micromachines 2022 Volume 13, Issue 10, Article 1794

Personalised drug delivery systems with the ability to offer real-time imaging and control release are an advancement in diagnostic and therapeutic applications. This allows for a tailored drug dosage specific to the patient with a release profile that offers the optimum therapeutic effect. Coupling this application with medical imaging capabilities, real-time contrast can be viewed to display the interaction with the host. Current approaches towards such novelty produce a drug burst release profile and contrasting agents associated with side effects as a result of poor encapsulation of these components. In this study, a 3D-printed drug delivery matrix with real-time imaging…

GelMA Hydrogel Reinforced with 3D Printed PEGT/PBT Scaffolds for Supporting Epigenetically-Activated Human Bone Marrow Stromal Cells for Bone Repair

Journal of Functional Biomaterials 2022 Volume 13, Issue 2, Article 14

Epigenetic approaches using the histone deacetylase 2 and 3 inhibitor-MI192 have been reported to accelerate stem cells to form mineralised tissues. Gelatine methacryloyl (GelMA) hydrogels provide a favourable microenvironment to facilitate cell delivery and support tissue formation. However, their application for bone repair is limited due to their low mechanical strength. This study aimed to investigate a GelMA hydrogel reinforced with a 3D printed scaffold to support MI192-induced human bone marrow stromal cells (hBMSCs) for bone formation. Cell culture: The GelMA (5 wt%) hydrogel supported the proliferation of MI192-pre-treated hBMSCs. MI192-pre-treated hBMSCs within the GelMA in osteogenic culture significantly increased…

Rapid Customization and Manipulation Mechanism of Micro-Droplet Chip for 3D Cell Culture

Micromachines 2022 Volume 13, Issue 12, Article 2050

A full PDMS micro-droplet chip for 3D cell culture was prepared by using SLA light-curing 3D printing technology. This technology can quickly customize various chips required for experiments, saving time and capital costs for experiments. Moreover, an injection molding method was used to prepare the full PDMS chip, and the convex mold was prepared by light-curing 3D printing technology. Compared with the traditional preparation process of micro-droplet chips, the use of 3D printing technology to prepare micro-droplet chips can save manufacturing and time costs. The different ratios of PDMS substrate and cover sheet and the material for making the convex…

Multi-omics analysis based on 3D-bioprinted models innovates therapeutic target discovery of osteosarcoma

Bioactive Materials 2022 Volume 18, Pages 459-470

Current in vitro models for osteosarcoma investigation and drug screening, including two-dimensional (2D) cell culture and tumour spheroids (i.e. cancer stem-like cells), lack extracellular matrix (ECM). Therefore, results from traditional models may not reflect real pathological processes in genuine osteosarcoma histological structures. Here, we report a three-dimensional (3D) bioprinted osteosarcoma model (3DBPO) that contains osteosarcoma cells and shrouding ECM analogue in a 3D frame. Photo-crosslinkable bioinks composed of gelatine methacrylamide and hyaluronic acid methacrylate mimicked tumour ECM. We performed multi-omics analysis, including transcriptomics and DNA methylomics, to determine differences between the 3DBPO model and traditional models. Compared with 2D models…

Development of a borosilicate bioactive glass scaffold incorporating calcitonin gene-related peptide for tissue engineering

Biomaterials Advances 2022 Volume 138, Article 212949

Protein delivery and release from synthetic scaffold materials are major challenges within the field of bone tissue engineering. In this study, 13-93B1.5 borosilicate bioactive glass (BSG) base paste was 3D printed to produce BSG-based scaffolds with high porosity (59.85 ± 6.04%) and large pore sizes (350–400 μm) for functionalization with a sodium alginate (SA)/calcitonin gene-related peptide (CGRP) hydrogel mixture. SA/CGRP hydrogel was uniformly filled into the interconnected pores of 3D printed BSG constructs to produce BSG-SA/CGRP scaffolds which were subject to bioactivity and biocompatibility analysis. BSG scaffolds filled with SA hydrogel underwent dissolution in simulated body fluid (SBF), resulting in…