3D Bioplotter Research Papers

Displaying 10 latest papers (799 papers in the database)

Controlling properties of ceramic formulations for porcelain robocasting

Ceramics International 2023 Volume 49, Issue 3, Pages 4764-4774

Porcelain pastes (PlotPastes) were formulated to be used on an additive manufacturing (AM) process (material extrusion) process, primarily robocasting (R3D) technique. The material morphological and thermal characteristics were evaluated by scanning electron microscopy (SEM), differential thermal analysis (DTA) and thermogravimetric analysis (TGA). The rheology and the electrical potential of the ceramic particles were also studied to select and adequate the porcelain paste properties to the R3D AM technique. It was found that shifting the pH values to acidic, the surface charge of the particles changes and increases the pastes viscosity due to agglomeration effects. This behaviour was exploited to optimize…

Introduction of an Ambient 3D-Printable Hydrogel Ink to Fabricate an Enzyme-Immobilized Platform with Tunable Geometry for Heterogeneous Biocatalysis

Biomacromolecules 2023 Volume 24, Issue 7, Pages 3138-3148

An enzyme-immobilized platform for biocatalysis was developed through 3D printing of a hydrogel ink comprising dimethacrylate-functionalized Pluronic F127 (F127-DMA) and sodium alginate (Alg) with laccase that can be done at ambient temperature, followed by UV-induced cross-linking. Laccase is an enzyme that can degrade azo dyes and various toxic organic pollutants. The fiber diameter, pore distance, and surface-to-volume ratio of the laccase-immobilized and 3D-printed hydrogel constructs were varied to determine their effects on the catalytic activity of the immobilized enzyme. Among the three geometrical designs investigated, the 3D-printed hydrogel constructs with flower-like geometry exhibited better catalytic performance than those with cubic…

Biodegradable Multi-layered Silk Fibroin-PCL Stent for the Management of Cervical Atresia: In Vitro Cytocompatibility and Extracellular Matrix Remodeling In Vivo

ACS Applied Materials & Interfaces 2023 Volume 15, Issue 33, Pages 39099–39116

Cervical atresia is a rare congenital Müllerian duct anomaly that manifests as the absence or deformed nonfunctional presence of the cervix. Herein, a multi-layered biodegradable stent is fabricated using a homogeneous blend of silk fibroin with polycaprolactone using hexafluoroisopropanol as a common solution. Briefly, a concentric cylinder of 3D honeycomb layer is sandwiched within electrospun sheets for fixing at the cervico-uterine junction to pave the way of cervical reconstruction. An average length of 40 mm with 3 mm diameter is fabricated for the hybrid stent design. SEM evidences an evenly distributed pore architecture of the electrospun layer, and mechanical characterization…

Shape transformation of 4D printed edible insects triggered by thermal dehydration

Journal of Food Engineering 2023 Volume 358, Article 111666

Insect-based food was fabricated by 3D printing of edible insect inks (cricket; CK or silkworm; SW) aiming to produce an alternative and sustainable food with high protein for a variety of consumers. CK and SW of 30% (w/v) together with 5%(w/v) sodium alginate can be 3D-printed into several designed geometries with fine resolution. 4D shape transformation as triggered by thermal stimuli at 80 °C of the printed insect-based objects was found to be varied with infill angle and infill pattern. The ability to form the CK/SW bilayer structure of which shape transformation upon thermal dehydration was similar to that of…

Direct Printed Flexible Organic Thin-Film Transistors With Cross-Linked PVA-Carrageenan Gate Dielectric

IEEE Sensors Letters 2023 Volume 7, Issue 5, Article 4500804

There is an urgent need to develop and implement green materials in electronic systems to minimize the negative environmental impact of traditional electronic materials. In this letter, low-temperature cross-linked polyvinyl alcohol (PVA)-carrageenan (CAR) layer is presented as a green electronic gate dielectric for high-performance organic thin-film transistors (OTFT). A metal-free, flexible OTFT, direct printed on polyaniline films using poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) gel-based gate–source–drain layers, PVA-CAR gate dielectric, and 6,13-bis(triisopropylsilylethynyl)pentacene semiconductor, is tested and characterized compared with a more conventional organic gate dielectric polymethylmethacrylate. PVA-CAR metal–dielectric–metal capacitors showed excellent dielectric properties with an average absolute dielectric constant value of 22.36 and an absolute…

System-on-Board Integrated Flexible OEGFET Aptasensor for Multianalyte Testing in Saliva

IEEE Journal on Flexible Electronics 2023 Volume 2, Number 2, Pages 71-76

The need for oral health monitoring point-of-care (PoC) systems is ever growing. We have recently reported a novel, aptamer-based flexible biosensor for detection of a high impact hormone—cortisol—in saliva samples using organic electrolyte-gated FET (OEGFET) technology. In this work, we are reporting a system-on-board (SoB) level integration of an improved flexible OEGFET aptasensor, which was previously reliant on a bench-top measurement setup. The reported flexible OEGFET aptasensor has integrated soft microfluidics and a low-power (< 300 mW) customized printed circuit board. The interfacing of flexible aptasensor to the circuit board was achieved using a low-temperature extrusion printing technique. The system…

Plasma surface modification of two-component composite scaffolds consisting of 3D-printed and electrospun fiber components from biodegradable PLGA and PLCL

European Polymer Journal 2023 Volume 194, Article 112135

In this study, two-component, morphologically composite scaffolds consisting of a 3D-printed component and an electrospun fiber component were fabricated and treated with a nitrogen-argon (N2-Ar) plasma to enhance their surface properties. The 3D-printed component provided mechanical strength, while the electrospun fibrous component acted as a mimic to the extracellular matrix to improve cell-substrate interactions. Two biodegradable polyesters, poly(L-lactide-co–ε-caprolactone) (PLCL) and poly(L-lactide-co-glycolide) (PLGA), were used to create the scaffolds. The resulting 3D/E/N2-Ar scaffolds were characterized in terms of surface properties (morphology, chemical compositions, wettability, roughness, crystallinity), degradation, mechanical properties, and cell cytotoxicity, cell attachment and proliferation, LDH release and cell apoptosis.…

Influence of Polymeric Microparticle Size and Loading Concentration on 3D Printing Accuracy and Degradation Behavior of Composite Scaffolds

3D Printing and Additive Manufacturing 2024 Volume 11, Number 2, Pages e813–e827

Successful employment of 3D printing for delivery of therapeutic biomolecules requires protection of their bioactivity on exposure to potentially inactivating conditions. Although intermediary encapsulation of the biomolecules in polymeric particulate delivery vehicles is a promising strategy for this objective, the inclusion of such particles in 3D printing formulations may critically impact the accuracy or precision of 3D printed scaffolds relative to their intended designed architectures, as well as the degradation behavior of both the scaffolds and the included particles. The present work aimed to elucidate the effect of poly(d,l-lactic-co-glycolic acid) particle size and loading concentration on material accuracy, machine precision,…

Effect of internal lattice structure on the flexural strength of 3D printed hierarchical porous ultra-high temperature ceramic (ZrB2)

Journal of the European Ceramic Society 2023 Volume 43, Issue 5, Pages 1762-1776

3D printing of technical ceramics using direct ink writing (DIW) of multiphase colloidal inks has the unique ability to create structures with hierarchical features. To facilitate the application of 3D printed hierarchical porous ultra-high temperature ceramics (UHTCs), additional limiting factors such as strength and the effect of 3D printed internal lattice structure need to be better understood. This study reports on the strength dependence of common DIW print parameters including internal lattice structure shape, nozzle diameter and spacings between adjacent filaments. The present study applies Weibull statistics to the experimental array that considers macro features introduced through print parameters as…

Effect of particle shape on rheology and printability of highly filled reactive inks for direct ink writing

Progress in Additive Manufacturing 2023 Volume 8, Pages 1573–1585

Highly filled inks including a reactive titanium–boron composite powder (with Ti·2B composition), a polymeric binder, and a solvent mixture combining the main solvent with a plasticizer and surfactant, are prepared for material extrusion-based printing. To determine the effect of particle shape and loading on rheology and printability of the inks, both spherical and irregularly shaped powders with the same composition and close particle sizes are manufactured by high-energy milling and used to formulate 80%, 90%, and 95% (wt.) inks. All ink formulations show shear thinning and shear recovery behavior. The degree of shear thinning decreases with increased particle loading, and…

Titanium Boron PLGA