3D Bioplotter Research Papers

Displaying all papers by J. Chen (5 results)

3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation

Journal of Colloid and Interface Science 2020 Volume 574, Pages 162-173

The integration of multiscale micro- and macroenvironment has been demonstrated as a critical role in designing biomimetic scaffolds for peripheral nerve tissue regeneration. While it remains a remarkable challenge for developing a biomimetic multiscale scaffold for enhancing 3D neuronal maturation and outgrowth. Herein, we present a 3D bioprinted multiscale scaffold based on a modular bioink for integrating the 3D micro- and macroenvironment of native nerve tissue. Gelatin methacryloyl (GelMA)/Chitosan Microspheres (GC-MSs) were prepared by a microfluidic approach, and the effect of these microspheres on enhancing neurite outgrowth and elongation of PC12 cells was demonstrated. The 3D multiscale composite scaffolds were…

Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels

Biofabrication 2020 Volume 12, Number 3, Article 035007

Inspired by stimuli-tailored dynamic processes that spatiotemporally create structural and functional diversity in biology, a new hierarchical patterning strategy is proposed to induce the emergence of complex multidimensional structures via dynamic sacrificial printing of stimuli-responsive hydrogels. Using thermally responsive gelatin (Gel) and pH-responsive chitosan (Chit) as proof-of-concept materials, we demonstrate that the initially printed sacrificial material (Gel/Chit-H+ hydrogel with a single gelatin network) can be converted dynamically into non-sacrificial material (Gel/Chit-H+–Citr hydrogel with gelatin and an electrostatic citrate–chitosan dual network) under stimulus cues (citrate ions). Complex hierarchical structures and functions can be created by controlling either the printing patterns of…

A novel vehicle-like drug delivery 3D printing scaffold and its applications for a rat femoral bone repairing in vitro and in vivo

International Journal of Biological Sciences 2020 Volume 16, Issue 11, Pages 1821-1832

The high surface area ratio and special structure of mesoporous bioactive glass (MBG) endow it with excellent physical adsorption of various drugs without destroying the chemical activity. Silicate 1393 bioactive glass (1393) is famous for its fantastic biodegradability and osteogenesis. Herein, we have built a novel vehicle-like drug delivery 3D printing scaffold with multiplexed drug delivery capacity by coating MBG on the surface of 1393 ([email protected]). Furthermore, we have applied DEX and BMP-2 on the [email protected] scaffold to endow it with antibacterial and osteogenic properties. Results indicated that this [email protected] scaffold could effectively load and controlled release BMP-2, DNA and…

Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair

International Journal of Biological Macromolecules 2020 Volume 148, Pages 153-162

With the increasing applications of 3D printing technology in biomedical field, the composition or additives of the related materials has become critical for the next development. In the current study, we have prepared 3D printed polycaprolactone-hydroxyapatite (PCL-HA) porous scaffolds with loaded heparan sulfate (HS), in order to reveal the reparative effect of different concentrations of HS on the healing of bone defects. As a result, the scaffold itself showed sound compression resistance, air porosity and good biocompatibility. From both in vitro and in vivo experiments, the scaffold with low concentration of HS led to positive effects in promoting osteoblast maturation…

Silicone resin derived larnite/C scaffolds via 3D printing for potential tumor therapy and bone regeneration

Chemical Engineering Journal 2020 Volume 382, Article 122928

Three dimensional (3D) printing has been used to fabricate bioceramic scaffolds for treating the tumor-related defects in recent years, but the fabrication process and the introduction of anti-tumor agents are still challenging. In this study, porous free carbon-embedding larnite (larnite/C) scaffolds have been successfully fabricated by 3D printing of the silicone resin loaded with CaCO3 filler and high temperature treatment under an inert atmosphere. The fabricated larnite/C scaffolds had uniform interconnected macropores (ca. 400 μm), and exhibited excellent photothermal effect, which was able to kill human osteosarcoma cells (MNNG/HOS) and inhibit the tumor growth in nude mice. Moreover, the larnite/C scaffolds…