3D Bioplotter Research Papers
Zirconia Incorporation in 3D Printed β-Ca2SiO4 Scaffolds on Their Physicochemical and Biological Property
3D printed bioceramics derived from preceramic polymers are of great interest in bone tissue engineering due to their simplified fabrication processes. In this study, three-dimensional (3D) porous β-Ca2SiO4 scaffolds incorporated with ZrO2 were fabricated from silicone resin loaded with active CaCO3 and inert ZrO2 fillers by 3D printing. The fabricated scaffolds possessed uniform interconnected macropores with a high porosity (> 67%). The results showed that the increase of ZrO2 incorporation significantly enhanced the compressive strength, and stimulated cell proliferation and differentiation of osteoblasts. Importantly, the in vivo results indicated that the ZrO2-incorporated β-Ca2SiO4 scaffolds improved osteogenic capacity compared to pure…
3D printed porous β-Ca2SiO4 scaffolds derived from preceramic resin and their physicochemical and biological properties
Silicate bioceramic scaffolds are of great interest in bone tissue engineering, but the fabrication of silicate bioceramic scaffolds with complex geometries is still challenging. In this study, three-dimensional (3D) porous β-Ca2SiO4 scaffolds have been successfully fabricated from preceramic resin loaded with CaCO3 active filler by 3D printing. The fabricated β-Ca2SiO4 scaffolds had uniform interconnected macropores (ca. 400 μm), high porosity (>78%), enhanced mechanical strength (ca. 5.2 MPa), and excellent apatite mineralization ability. Importantly, the results showed that the increase of sintering temperature significantly enhanced the compressive strength and the scaffolds sintered at higher sintering temperature stimulated the adhesion, proliferation, alkaline phosphatase activity,…
Design of bioglasses/PDLLA scaffolds with responsive drug delivery in ultrasonic-assisted bone repair
Low-intensity pulsed ultrasound (LIPUS) assisted bone repair is confirmed effective in clinic. Here, a 3D-printed composite poly(DL-lactic acid)/mesoporous bioactive glass scaffold was constructed for particular use in LIPUS-assisted bone tissue engineering. The scaffolds contain dimethyloxallyl glycine (DMOG) loaded microbubbles in pores, which can be released after implanting via LIPUS stimulation. Local DMOG concentrations are modulated through ultrasound power and processing time. The rat bone marrow-derived mesenchymal stem cells (rBMSCs) on these scaffolds with ultrasound treatment show improved proliferation and early osteogenic differentiation.
Drug-loaded zeolite imidazole framework-8-functionalized bioglass scaffolds with antibacterial activity for bone repair
Bacterial infection is an important challenge when repairing bone defects with implant materials. The development of functional scaffolds with an intelligent antibacterial function that can be used for bone repair are of great significance. In this study, we used vancomycin (VAN) as a model antibiotic drug and proposed the fabrication of VAN-loaded zeolite imidazole framework-8-functionalized bioglass (ZIF-8@VAN@BG) scaffolds with a pH-responsive antibacterial effect for use in potentially infected bone repair applications. The physicochemical properties, in vitro biological properties and antibacterial properties of the scaffolds were studied. The results showed that the ZIF-8@VAN@BG scaffolds had a 3D porous structure and exhibited…
3D printing of an integrated triphasic MBG-alginate scaffold with enhanced interface bonding for hard tissue applications
Osteochondral defects affect both of cartilage and subchondral areas, thus it poses a significant challenge to simultaneously regenerate two parts in orthopedics. Tissue engineering strategy is currently regarded as the most promising way to repair osteochondral defects. This study focuses on developing a multilayered scaffold with enhanced interface bonding through 3D printing. One-shot printing process enables control over material composition, pore structure, and size in each region of the scaffold, while realizes seamlessly integrated construct as well. The scaffold was designed to be triphasic: a porous bone layer composed of alginate sodium (SA) and mesoporous bioactive glasses (MBG), an intermediate…
Functional reconstruction of injured corpus cavernosa using 3D-printed hydrogel scaffolds seeded with HIF-1α-expressing stem cells
Injury of corpus cavernosa results in erectile dysfunction, but its treatment has been very difficult. Here we construct heparin-coated 3D-printed hydrogel scaffolds seeded with hypoxia inducible factor-1α (HIF-1α)-mutated muscle-derived stem cells (MDSCs) to develop bioengineered vascularized corpora. HIF-1α-mutated MDSCs significantly secrete various angiogenic factors in MDSCs regardless of hypoxia or normoxia. The biodegradable scaffolds, along with MDSCs, are implanted into corpus cavernosa defects in a rabbit model to show good histocompatibility with no immunological rejection, support vascularized tissue ingrowth, and promote neovascularisation to repair the defects. Evaluation of morphology, intracavernosal pressure, elasticity and shrinkage of repaired cavernous tissue prove that…
Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy
Bacterial infection of the implanting materials is one of the greatest challenges in bone tissue engineering. In this study, porous forsterite scaffolds with antibacterial activity have been fabricated by combining 3D printing and polymer-derived ceramics (PDCs) strategy, which effectively avoided the generation of MgSiO3 and MgO impurities. Forsterite scaffolds sintered in an argon atmosphere can generate free carbon in the scaffolds, which exhibited excellent photothermal effect and could inhibit the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro. In addition, forsterite scaffolds have uniform macroporous structure, high compressive strength (>30 MPa) and low degradation rate.…
2D MXene‐Integrated 3D‐Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction
The residual of malignant tumor cells and lack of bone‐tissue integration are the two critical concerns of bone‐tumor recurrence and surgical failure. In this work, the rational integration of 2D Ti3C2 MXene is reported with 3D‐printing bioactive glass (BG) scaffolds for achieving concurrent bone‐tumor killing by photonic hyperthermia and bone‐tissue regeneration by bioactive scaffolds. The designed composite scaffolds take the unique feature of high photothermal conversion of integrated 2D Ti3C2 MXene for inducing bone‐tumor ablation by near infrared‐triggered photothermal hyperthermia, which has achieved the complete tumor eradication on in vivo bone‐tumor xenografts. Importantly, the rational integration of 2D Ti3C2 MXene…
Silicone resin derived larnite/C scaffolds via 3D printing for potential tumor therapy and bone regeneration
Three dimensional (3D) printing has been used to fabricate bioceramic scaffolds for treating the tumor-related defects in recent years, but the fabrication process and the introduction of anti-tumor agents are still challenging. In this study, porous free carbon-embedding larnite (larnite/C) scaffolds have been successfully fabricated by 3D printing of the silicone resin loaded with CaCO3 filler and high temperature treatment under an inert atmosphere. The fabricated larnite/C scaffolds had uniform interconnected macropores (ca. 400 μm), and exhibited excellent photothermal effect, which was able to kill human osteosarcoma cells (MNNG/HOS) and inhibit the tumor growth in nude mice. Moreover, the larnite/C scaffolds…
3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors
Scaffolds with controlled drug release are valuable for bone tissue engineering, but constructing the scaffolds with controllable dual-drug release behaviors is still a challenge. In this study, layered mesoporous bioactive glass/sodium alginate-sodium alginate (MBG/SA–SA) scaffolds with controllable dual-drug release behaviors were fabricated by 3D printing. The porosity and compressive strength of three-dimensional (3D) printed MBG/SA–SA scaffolds by cross-linking are about 78% and 4.2 MPa, respectively. As two model drugs, bovine serum albumin (BSA) and ibuprofen (IBU) were separately loaded in SA layer and MBG/SA layer, resulting in a relatively fast release of BSA and a sustained release of IBU. Furthermore,…
Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores
One of the latest trends in the regenerative medicine is the development of 3D-printing hydrogel scaffolds with biomimetic structures for tissue regeneration and organ reconstruction. However, it has been practically difficult to achieve a highly biomimetic hydrogel scaffolds with proper mechanical properties matching the natural tissue. Here, bacterial cellulose nanofibers (BCNFs) were applied to improve the structural resolution and enhance mechanical properties of silk fibroin (SF)/gelatin composite hydrogel scaffolds. The SF-based hydrogel scaffolds with hierarchical pores were fabricated via 3D-printing followed by lyophilization. Results showed that the tensile strength of printed sample increased significantly with the addition of BCNFs in…
3D printing of free-standing and flexible nitrogen doped graphene/ polyaniline electrode for electrochemical energy storage
Flexible graphene film can be quickly realized by three-dimensional printing (3D printing), which has the potential in functional electronic devices. With a trace of cobalt ions as crosslinker, the graphene oxide sol can be converted into 3D printed ink, overcoming the disadvantage of insufficient viscosity of pure graphene oxide ink. The various graphene architectures were successfully obtained by 3D printing, moreover, graphene/polyaniline composites were obtained by electropolymerization. The specific capacitance of graphene/polyaniline electrode achieved up to 238 F/g at the current density of 0.5 A/g, which was much higher than that of graphene electrode (35 F/g).
3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering
The fabrication of bone tissue engineering scaffolds with high osteogenic ability and favorable mechanical properties is of huge interest. In this study, a silk fibroin (SF) solution of 30 wt% was extracted from cocoons and combined with mesoporous bioactive glass (MBG) to fabricate MBG/SF composite scaffolds by 3D printing. The porosity, compressive strength, degradation and apatite forming ability were evaluated. The results illustrated that MBG/SF scaffolds had superior compressive strength (ca. 20 MPa) and good biocompatibility, and stimulated bone formation ability compared to mesoporous bioactive glass/polycaprolactone (MBG/PCL) scaffolds. We subcutaneously transplanted hBMSCs-loaded MBG/SF and MBG/PCL scaffolds into the back of nude mice…
3D-printed ternary SiO2CaOP2O5 bioglass-ceramic scaffolds with tunable compositions and properties for bone regeneration
Simple ternary SiO2CaOP2O5 bioglasses proved sufficient osteogenesis capacity. In this study, the bioglasses were 3D printed into porous scaffolds and SiO2/CaO molar ratio was altered (from 90/5 to 60/35) to achieve tunable glass-ceramic compositions after thermal treatment. Scaffolds possessed interconnected porous structure with controllable porosities via 3D printing technique. In addition, microstructure and properties of mechanical strength, degradation, ion dissolution and apatite formation were investigated. Characterization results showed that higher content of SiO2 produced more homogeneous crystalline particles and sintering compactness, thus led to higher strength. For scaffolds with higher CaO content, more glasses were maintained and faster degradation rate…
3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks
Natural polymer hydrogels are one of the best biomaterials for soft tissue repair because of their excellent biocompatibility, biodegradability and low immune rejection. However, they lack mechanical strength matching that of natural tissue and desired functionality (e.g., self-healing and 3D-printability). To solve these problems, we developed a host–guest supramolecule (HGSM) with three arms covalently crosslinked with a natural polymer to construct a novel hydrogel with non-covalent bonds integrated into a covalently crosslinked network. This unique structure enabled the hydrogel to exhibit improved mechanical properties and show both self-healing and 3D printing capabilities. The three-armed HGSM was first prepared via efficient…
Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink
Gelatin methacryloyl is a promising material in tissue engineering and has been widely studied in three-dimensional bioprinting. Although gelatin methacryloyl possesses excellent biocompatibility and tunable mechanical properties, its poor printability/processability has hindered its further applications. In this study, we report a reversible physical crosslinking strategy for precise deposition of human chondrocyte-laden gelatin methacryloyl bioink at low concentration without any sacrificial material by using extrusive three-dimensional bioprinting. The precise printing temperature was determined by the rheological properties of gelatin methacryloyl with temperature. Ten percent (w/v) gelatin methacryloyl was chosen as the printing formula due to highest biocompatibility in three-dimensional cell cultures…
3D printed mesoporous bioactive glass/metal-organic framework scaffolds with antitubercular drug delivery
Three-dimensional (3D) porous scaffolds with sustained drug delivery are pursued for osteoarticular tuberculosis therapy after surgery. In this study, mesoporous bioactive glass/metal-organic framework (MBG/MOF) scaffolds with sustained antitubercular drug release have been fabricated by 3D printing. The results showed that the MBG/MOF scaffolds possess macropores of ca. 400 μm and enhanced compressive strength of 3–7 MPa, also exhibited good biocompatibility and apatite forming ability in vitro. Furthermore, the drug release rate and pH microenvironment of the MBG/MOF scaffolds could be controlled due to the MOF degradation. These results indicated that the 3D printed MBG/MOF scaffolds are promising for treating osteoarticular tuberculosis.
3D Bioprinting of Cellulose with Controlled Porous Structures from NMMO
In the present work, dissolved cellulose has been 3D bioprinted to produce complex structures with ordered interconnected pores. The process consists of the dissolution of dissolving pulps in N-methylmorpholine-N-oxide (NMMO), multilayered dispensing, water removal of NMMO and freeze-drying. 3D bioprinting of cellulose/NMMO solution at 70 ℃ was analogous to that of thermoplastics by the process of melting and solidification to produce cellulose/NMMO objects in the solid form. However, 3D bioprinting of cellulose/NMMO solution at a higher temperature than 70 ℃ produced cellulose/NMMO objects in the gel form. Cellulose was regenerated by water; thereafter, freeze-drying treatment maintained the 3D bioprinted structures…
Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo
In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were successfully fabricated using a 3D printing technique, which had a regular and uniform square macroporous structure, high porosity and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on scaffolds to evaluate hBMSC attachment, proliferation and osteogenesis-related gene expression. Critical-sized rat calvarial defects were applied to investigate the…
3D printing of pearl/CaSO4 composite scaffolds for bone regeneration
The development of biomaterials with high osteogenic ability for fast osteointegration with a host bone is of great interest. In this study, pearl/CaSO4 composite scaffolds were fabricated using three-dimensional (3D) printing, followed by a hydration process. The pearl/CaSO4 scaffolds showed uniform interconnected macropores (∼400 μm), high porosity (∼60%), and enhanced compressive strength. With CaSO4 scaffolds as a control, the biological properties of the pearl/CaSO4 scaffolds were evaluated in vitro and in vivo. The results showed that the pearl/CaSO4 scaffolds possessed a good apatite-forming ability and stimulated the proliferation and differentiation of rat bone mesenchymal stem cells (rBMSCs), as well as…
Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair
In the study, we developed hierarchical composite scaffolds by 3D printing technique with mesoporous CaSiO3 containing controlled amounts of Ce substitution in Ca–Si system. The scaffolds were porous with 3D interconnected large pores (size ~400 μm) and an overall porosity above 70 %, combined with a relative high compressive strength (~7 MPa). These properties are essential for enhancing bone ingrowth in tissue engineering. The in vitro biological properties of apatite formation, cell proliferation, and differentiation were characterized on CeO2-MCS scaffolds and MCS scaffolds. Results indicated that CeO2-MCS scaffolds induced similar apatite deposition and cell attachment of human bone marrow stromal…
The effect of calcium sulfate incorporation on physiochemical and biological properties of 3D-printed mesoporous calcium silicate cement scaffolds
Development of 3D porous scaffolds with proper mechanical strength is crucial in bone tissue engineering. In this study, calcium sulfate hemihydrate (CSH) cement was functionally incorporated into mesoporous calcium silicate (MCS) through a 3D printing technique in order to improve the scaffold strength. Compared to printed MCS scaffolds, the characterizations revealed that 20% CSH incorporation had enhanced their compressive strength by 2 times via 4 weeks’ hydration. Furthermore, CSH incorporation prevented the fast pH value rise and achieved a balanced degradation rate. SEM observations showed a good apatite formation on the surfaces of both MCS and MCS/CSH scaffolds. Cellular experiments…
Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration
Bone defects, particularly large bone defects resulting from infections, trauma, surgical resection or genetic malformations, maintain a significant challenge for clinicians. In this study, the tricalcium silicate/mesoporous bioactive glass (C3S/MBG) cement scaffolds were successfully fabricated for the first time by 3D printing with a curing process, which combined the hydraulicity of C3S with the excellent biological property of MBG together. The C3S/MBG scaffolds exhibited 3D interconnected macropores (~400μm), high porosity (~70%), enhanced mechanical strength (>12MPa) and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on the scaffolds to evaluate their cell responses, and the results…
3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy
After surgical treatment of osteoarticular tuberculosis (TB), it is necessary to fill the surgical defect with an implant, which combines the merits of osseous regeneration and local multi-drug therapy so as to avoid drug resistance and side effects. In this study, a 3D-printed macro/meso-porous composite scaffold is fabricated. High dosages of isoniazid (INH)/rifampin (RFP) anti-TB drugs are loaded into chemically modified mesoporous bioactive ceramics in advance, which are then bound with poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) through a 3D printing procedure. The composite scaffolds show greatly prolonged drug release time compared to commercial calcium phosphate scaffolds either in vitro or in vivo.…
Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects
The development of a new generation of biomaterials with high osteogenic ability for fast osseointegration with host bone is being intensively investigated. In this study, we have fabricated three-dimensional (3-D) strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds by a 3-D printing technique. Sr-MBG scaffolds showed uniform interconnected macropores (∼400 μm), high porosity (∼70%) and enhanced compressive strength (8.67 ± 1.74 MPa). Using MBG scaffolds as a control, the biological properties of Sr-MBG scaffolds were evaluated by apatite-forming ability, adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteoblast-like cells MC3T3-E1. Furthermore, Sr-MBG scaffolds were used to repair critical-sized rat calvarial…
3D-printed dimethyloxallyl glycine delivery scaffolds to improve angiogenesis and osteogenesis
Angiogenesis–osteogenesis coupling processes are vital in bone tissue engineering. Normal biomaterials implanted in bone defects have issues in the sufficient formation of blood vessels, especially in the central part. Single delivery of vascular endothelial growth factors (VEGF) to foci in previous studies did not show satisfactory results due to low loading doses, a short protein half-life and low efficiency. Development of a hypoxia-mimicking microenvironment for cells by local prolyl-4-hydroxylase inhibitor release, which can stabilize hypoxia-inducible factor 1α (HIF-1α) expression, is an alternative method. The aim of this study was to design a dimethyloxallyl glycine (DMOG) delivering scaffold composed of mesoporous…
Three-dimensionally plotted MBG/PHBHHx composite scaffold for antitubercular drug delivery and tissue regeneration
A suitable drug-loaded scaffold that can postoperatively release an antituberculosis drug efficiently in a lesion area and help repair a bone defect is very important in the clinical treatment of bone tuberculosis (TB). In this study, a composite drug-loaded cylindrical scaffold was prepared by using three-dimensional printing technology in combination with the mesoporous confinement range, surface chemical groups, and gradual degradation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). This achieves the slow release of a drug for as long as possible. We implanted the drug-loaded compound scaffold into New Zealand rabbits’ femur defect model to study the in vivo drug release performance and osteogenic ability.…
3D-Printed Magnetic Fe3O4/MBG/PCL Composite Scaffolds with Multifunctionality of Bone Regeneration, Local Anticancer Drug Delivery and Hyperthermia
In this study, three-dimensional (3D) magnetic Fe3O4 nanoparticles containing mesoporous bioactive glass/polycaprolactone (Fe3O4/MBG/PCL) composite scaffolds have been fabricated by the 3D-printing technique. The physiochemical properties, in vitro bioactivity, anticancer drug delivery, mechanical strength, magnetic heating ability and cell response of Fe3O4/MBG/PCL scaffolds were systematically investigated. The results showed that Fe3O4/MBG/PCL scaffolds had uniform macropores of 400 μm, high porosity of 60% and excellent compressive strength of 13–16 MPa. The incorporation of magnetic Fe3O4 nanoparticles into MBG/PCL scaffolds did not influence their apatite mineralization ability but endowed excellent magnetic heating ability and significantly stimulated proliferation, alkaline phosphatase (ALP) activity, osteogenesis-related gene…
Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration
In this study, we fabricated strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds with controlled architecture and enhanced mechanical strength using a three-dimensional (3-D) printing technique. The study showed that Sr-MBG scaffolds had uniform interconnected macropores and high porosity, and their compressive strength was ∼170 times that of polyurethane foam templated MBG scaffolds. The physicochemical and biological properties of Sr-MBG scaffolds were evaluated by ion dissolution, apatite-forming ability and proliferation, alkaline phosphatase activity, osteogenic expression and extracelluar matrix mineralization of osteoblast-like cells MC3T3-E1. The results showed that Sr-MBG scaffolds exhibited a slower ion dissolution rate and more significant potential to stabilize the…