3D Bioplotter Research Papers
Hybrid Process for Fabricating 3D Hierarchical Scaffolds Combining Rapid Prototyping and Electrospinning
An ideal scaffold should have good mechanical properties and provide a biologically functional implant site. A rapid prototyping system has been introduced as a good method of fabricating 3D scaffolds that mimic the structure in the human body. However, the scaffolds have strands that are too smooth and a pore size that is too large relative to the seeded cells and present unfavorable conditions for initial cell attachment. To overcome these problems, we propose a hybrid technology combining a 3D rapid prototyping system and an electrospinning process to produce a hierarchical 3D biomedical scaffold. The resulting structure consists of alternating…
Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing
Organ or tissue printing, a novel approach in tissue engineering, creates layered, cell-laden hydrogel scaffolds with a defined three-dimensional (3D) structure and organized cell placement. In applying the concept of tissue printing for the development of vascularized bone grafts, the primary focus lies on combining endothelial progenitors and bone marrow stromal cells (BMSCs). Here we characterize the applicability of 3D fiber deposition with a plotting device, Bioplotter, for the fabrication of spatially organized, cell-laden hydrogel constructs. The viability of printed BMSCs was studied in time, in several hydrogels, and extruded from different needle diameters. Our findings indicate that cells survive…
3D Plotted PCL Scaffolds for Stem Cell Based Bone Tissue Engineering
The ability to control the architecture and strength of a bone tissue engineering scaffold is critical to achieve a harmony between the scaffold and the host tissue. Rapid prototyping (RP) technique is applied to tissue engineering to satisfy this need and to create a scaffold directly from the scanned and digitized image of the defect site. Design and construction of complex structures with different shapes and sizes, at micro and macro scale, with fully interconnected pore structure and appropriate mechanical properties are possible by using RP techniques. In this study, RP was used for the production of poly(ε-caprolactone) (PCL) scaffolds.…
Dynamic Co-Seeding of Osteoblast and Endothelial Cells on 3D Polycaprolactone Scaffolds for Enhanced Bone Tissue Engineering
Tissue engineered scaffolds must have an organized and repeatable microstructure which enables cells to assemble in an ordered matrix that allows adequate nutriental perfusion. In this work, to evaluate the reciprocal cell interactions of endothelial and osteoblast-like cells, human osteoblast-like cells (MG63) and Human Umbilical Vein Endothelial Cells (HUVEC) were co-seeded onto 3D geometrically controlled porous poly(ε-caprolactone) (PCL) and cultured by means of a rotary cell culture system (RCCS-4DQ). In our dynamic co-culture system, the lack of significant enhancement of osteoblast ALP activity and ECM production indicated that the microgravity conditions of the rotary system affected the cells by favoring…
Vascularization and biocompatibility of scaffolds consisting of different calcium phosphate compounds
Scaffolds for tissue engineering of bone should mimic bone matrix and promote vascular ingrowth. Whether synthetic hydroxyapatite and acellular dentin, both materials composed from calcium phosphate, fulfill these material properties has not been studied yet. Therefore, we herein studied in vivo the host angiogenic and inflammatory response to these biomaterials. Porous scaffolds of hydroxyapatite and isogeneic acellular dentin were implanted into the dorsal skinfold chamber of balb/c mice. Additional animals received perforated implants of isogeneic calvarial bone displaying pores similar in size and structure to those of both scaffolds. Chambers of animals without implants served as controls. Angiogenesis and neovascularization…
Incorporation of growth factor containing Matrigel promotes vascularization of porous PLGA scaffolds
In tissue engineering, rapid ingrowth of blood vessels into scaffolds is a major prerequisite for the survival of three-dimensional tissue constructs. In the present study, we investigated whether the vascularization of implanted poly-D,L-lactic-co-glycolic acid (PLGA) scaffolds may be accelerated by incorporation of Matrigel. For this purpose, we investigated in the aortic ring assay the proangiogenic properties of growth factor reduced Matrigel (GFRM) and growth factor containing Matrigel (GFCM), which were then incorporated into the pores of PLGA scaffolds. Subsequently, we analyzed vascularization, biocompatibility, and incorporation of these scaffolds during 14 days after implantation into dorsal skinfold chambers of balb/c mice…
3D Fiber-Deposited Electrospun Integrated Scaffolds Enhance Cartilage Tissue Formation
Despite the periodical and completely interconnected pore network that characterizes rapid prototyped scaffolds, cell seeding efficiency remains still a critical factor for optimal tissue regeneration. This can be mainly attributed to the current resolution limits in pore size. We present here novel three-dimensional (3D) scaffolds fabricated by combining 3D fiber deposition (3DF) and electrospinning (ESP). Scaffolds consisted of integrated 3DF periodical macrofiber and random ESP microfiber networks (3DFESP). The 3DF scaffold provides structural integrity and mechanical properties, while the ESP network works as a “sieving” and cell entrapment system and offers?at the same time?cues at the extracellular matrix (ECM) scale.…
Improvement of Vascularization of PLGA Scaffolds by Inosculation of In Situ-Preformed Functional Blood Vessels With the Host Microvasculature
Objective: We analyzed, in vivo, whether the establishment of blood supply to implanted scaffolds can be accelerated by inosculation of an in situ-preformed microvascular network with the host microvasculature. Background: A rapid vascularization is crucial for the survival of scaffold-based transplanted tissue constructs. Methods: Poly-lactic-glycolic acid scaffolds were implanted into the flank of balb/c or green fluorescent protein (GFP)-transgenic mice for 20 days to create in situ a new microvascular network within the scaffolds. The prevascularized scaffolds were then transferred into the dorsal skinfold chamber of isogeneic recipient mice. Nonvascularized poly-lactic-glycolic acid scaffolds served as controls. Vascularization, blood perfusion, and…
Critical Steps toward a Tissue-Engineered Cartilage Implant Using Embryonic Stem Cells
Embryonic stem (ES) cells are a potential source for cartilage tissue engineering because they provide an unlimited supply of cells that can be differentiated into chondrocytes. So far, chondrogenic differentiation of both mouse and human ES cells has only been demonstrated in two-dimensional cultures, in pellet cultures, in a hydrogel, or on thin biomaterials. The next challenge will be to form cartilage on a load-bearing, clinically relevant-sized scaffold in vitro and in vivo, to regenerate defects in patients suffering from articular cartilage disorders. For a successful implant, cells have to be seeded efficiently and homogenously throughout the scaffold. Parameters investigated…
Bacterial and Candida albicans adhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials
Rapid prototyping (RP)-produced scaffolds aregaining increasing importance in scaffold-guided tissueengineering. Microbial adhesion on the surface of replacement materials has a strong influence on healing and long-term outcome. Consequently, it is important to examine the adherence of microorganisms on RP-produced scaffolds. This research focussed on manufacturing of scaffolds by 3D-bioplotting and examination of their microbial adhesion characteristics. Tricalciumphosphate (TCP), calcium/sodium alginate, and poly(lactide-co-glycolic acid) (PLGA) constructs were produced and used to study the adhesion of dental pathogens. Six oral bacterial strains, one Candida strain and human saliva were used for the adhesion studies. The number of colony forming units (CFU) were…
Design and Fabrication of 3D Porous Scaffolds to Facilitate Cell-Based Gene Therapy
Biomaterials capable of efficient gene delivery by embedded cells provide a fundamental tool for the treatment of acquired or hereditary diseases. A major obstacle is maintaining adequate nutrient and oxygen diffusion to cells within the biomaterial. In this study, we combined the solid free-form fabrication and porogen leaching techniques to fabricate three-dimensional scaffolds, with bimodal pore size distribution, for cell-based gene delivery. The objective of this study was to design micro-/macroporous scaffolds to improve cell viability and drug delivery. Murine bone marrow-derived mesenchymal stromal cells (MSCs) genetically engineered to secrete erythropoietin (EPO) were seeded onto poly-l-lactide (PLLA) scaffolds with different…