3D Bioplotter Research Papers

Displaying 10 latest papers (801 papers in the database)

Taking 4D Bio/Printing To Classroom

ADDFABCOMP– Additive Fabrication of Composite 2021

The emergence of four-dimensional (4D) printing in additive manufacturing (AM), which requires knowledge in multi-physics, chemistry, and engineering skills, is bringing many applications in biomedical, robotics, aerospace, and food industries. The increased usage of AM technology and smart materials in industry means that companies are seeking to develop and manage production system for academics with the multidisciplinary abilities and knowledge. This enables a high interdisciplinary platform for research and project modules suitable to be used in the academic environment for hands-on students training. This paper proposed an easy to implement and follow 4D bio/printing module well designed for students and…

Prediction Of Mechanical Performance Of 3d Printed CaMgSi2O6 Architectures

4th International Conference on Emerging Technologies in Materials Engineering EmergeMAT 2021 Page 24

In bone tissue engineering, 3D printing technology represents a promising means to obtain complex architectures with the possibility to control precisely the pore size.Diopside (CaMgSi2O6) is a biomaterial which has the ability to induce in vitro apatite formation and in vivo growth and differentiation of the osteoblast. CaMgSi2O6 is a biocompatible material that possesses good bending strength and fracture toughness, bioactivity and slow degradation rate. Due to its outstanding properties diopside has tremendous potential in medical applications.

Thermoelectric Transport in Bulk Ni Fabricated via Particle-Based Ink Extrusion Additive Manufacturing

Master's thesis, University of Cincinnati 2021
C. D. M. Apel

Additive manufacturing is becoming an increasingly attractive method for the fabrication of devices in both industry applications and materials science research. Comparatively, conventional synthesis methods are often more time-intensive and provide geometric constraints. This is true for the fabrication of thermoelectric devices, where additive manufacturing is being further explored to improve cost and design flexibility. Currently, little work has been conducted on the direct effects between additive manufacturing fabrication methods and if or how thermoelectric transport properties are altered from these methods. This work focuses on the process development of constructing bulk Ni samples via particle-based ink extrusion printing, where…

Biologically Enhanced Starch Bio-Ink for Promoting 3D Cell Growth

Advanced Materials Technologies 2021 Volue 6, Issue 12, Article 2100551

The excellent rheological property has legitimated the suitability of starch hydrogel for extrusion-based 3D printing. However, the inability to promote cell attachment and migration has precluded the non-modified starch hydrogel from direct applications in the biomedical field. Herein, a novel 3D printable nanocomposite starch hydrogel is developed with highly enhanced biocompatibility for promoting 3D cell growth, by formulating with gelatin nanoparticles and collagen. The rheological evaluation reveals the shear-thinning and thixotropic properties of the starch-based hydrogel, as well as the combinatorial effect of collagen and gelatin nanoparticles on maintaining printability and 3D shape fidelity. The homogeneous microporous structure with abundant…

Thiol-Rich Multifunctional Macromolecular Crosslinker for Gelatin- Norbornene-Based Bioprinting

Biomacromolecules 2021 Volume 22, Issue 6, Pages 2729-2739

Extrusion-based bioprinting is an emerging and most frequently used technique for the fabrication of cell-laden constructs. A suitable hydrogel-based bioink for cell encapsulation and protection is critical for printability, structural stability, and post-printing cell viability. The thiol–ene chemistry-based gelatin-norbornene (GelNB) hydrogels have drawn much attention as a promising substitution of gelatin methacryloyl (GelMA), owing to the fast and controllable step-growth polymerization mechanism, as well as a significant reduction in reactive oxygen species (ROS) accumulation. Herein, thiolated heparin (HepSH) was synthesized and used as a macromolecular crosslinker for GelNB-based bioprinting, so that GelNB gelation became less sensitive to the thiol/ene ratio.…

Solvent Mediating the in Situ Self-Assembly of Polysaccharides for 3D Printing Biomimetic Tissue Scaffolds

ACS Nano 2021 Volume 15, Issue 11, Pages 17790-17803

Intensively studied 3D printing technology is frequently hindered by the effective printable ink preparation method. Herein, we propose an elegant and gentle solvent consumption strategy to slowly disrupt the thermodynamic stability of the biopolymer (polysaccharide: cellulose, chitin, and chitosan) solution to slightly induce the molecule chains to in situ self-assemble into nanostructures for regulating the rheological properties, eventually achieving the acceptable printability. The polysaccharides are dissolved in the alkali/urea solvent. The weak Lewis acid fumed silica (as solvent mediator) is used to (i) slowly and partially consume the alkali/urea solvent to induce the polysaccharide chains to self-assemble into nanofibers to…

Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis

ACS Applied Materials & Interfaces 2021 Volume 13, Issue 16, Pages 18472-18487

Repair of large bone defects represents a major challenge for orthopedic surgeons. The newly formed microvessels inside grafts play a crucial role in successful bone tissue engineering. Previously, an active role for mesenchymal stem cell (MSC)-derived exosomes in blood vessel development and progression was suggested in the repair of multiple tissues. However, the reports on the application of MSC-derived exosomes in the repair of large bone defects are sparse. In this study, we encapsulated umbilical MSC-derived exosomes (uMSCEXOs) in hyaluronic acid hydrogel (HA-Gel) and combined them with customized nanohydroxyapatite/poly-ε-caprolactone (nHP) scaffolds to repair cranial defects in rats. Imaging and histological…

Complex-shaped, finely-featured ZrC/W composites via shape-preserving reactive melt infiltration of porous WC structures fabricated by 3D ink extrusion

Additive Manufacturing Letters 2021 Volume 1, Article 100018

Complex-shaped, finely-featured, ultra-high-melting ZrC/W composite structures were produced by coupling, for the first time, three-dimensional (3D) ink-extrusion printing with shape/size-preserving reactive melt infiltration (the Displacive Compensation of Porosity, DCP, process). Inks containing sub-micron WC powders were printed at ambient temperature into either fine-scale structures (sub-millimeter filaments) or into a larger-scale, finely-featured 3D structure (a centimeter-scale nozzle with a sub-millimeter-thick wall). After organic binder removal, the printed structures were sintered at 1650 °C for 1 h to achieve a porosity of 50%. The porous, rigid WC structures then underwent ambient pressure infiltration and reaction with Zr-Cu liquid at up to 1350…

Nanosilicate-Functionalized Polycaprolactone Orchestrates Osteogenesis and Osteoblast-Induced Multicellular Interactions for Potential Endogenous Vascularized Bone Regeneration

Macromolecular Bioscience 2022 Volume 22, Issue 2, Article 2100265

Massive oral and maxillofacial bone defect regeneration remains a major clinical challenge due to the absence of functionalized bone grafts with ideal mechanical and proregeneration properties. In the present study, Laponite (LAP), a synthetic nanosilicate, is incorporated into polycaprolactone (PCL) to develop a biomaterial for bone regeneration. It is explored whether LAP-embedded PCL would accelerate bone regeneration by orchestrating osteoblasts to directly and indirectly induce bone regeneration processes. The results confirmed the presence of LAP in PCL, and LAP is distributed in the exfoliated structure without aggregates. Incorporation of LAP in PCL slightly improved the compressive properties. LAP-embedded PCL is…

Tunable Crosslinking, Reversible Phase Transition, and 3D Printing of Hyaluronic Acid Hydrogels via Dynamic Coordination of Innate Carboxyl Groups and Metallic Ions

ACS Applied Bio Materials 2021 Volume 4, Issue 3, Pages 2408-2428

This article reports tunable crosslinking, reversible phase transition, and three-dimensional printing (3DP) of hyaluronic acid (HyA) hydrogels via dynamic coordination of Fe3+ ions with their innate carboxyl groups for the first time. The concentrations of Fe3+ and H+ ions and the reaction time determine the tunable ratios of mono-, bi-, and tridentate coordination, leading to the low-to-high crosslinking densities and reversible solid–liquid phase transition of HyA hydrogels. At the monodentate-dominant coordination, the liquid hydrogels have low crosslinking densities (HyA_L). At the mixed coordination of mono-, bi-, and tridentate bonding, the solid hydrogels have medium crosslinking densities (HyA_M). At the tridentate-dominant…