3D Bioplotter Research Papers

Displaying 10 latest papers (697 papers in the database)

Novel bioprinted 3D model to human fibrosis investigation

Biomedicine & Pharmacotherapy 2023 Volume 165, Article 115146

Fibrosis is shared in multiple diseases with progressive tissue stiffening, organ failure and limited therapeutic options. This unmet need is also due to the lack of adequate pre-clinical models to mimic fibrosis and to be challenged novel by anti-fibrotic therapeutic venues. Here using bioprinting, we designed a novel 3D model where normal human healthy fibroblasts have been encapsulated in type I collagen. After stimulation by Transforming Growth factor beta (TGFβ), embedded cells differentiated into myofibroblasts and enhanced the contractile activity, as confirmed by the high level of α − smooth muscle actin (αSMA) and F-actin expression. As functional assays, SEM…

Optimization of the modular reinforced bone scaffold for customized alveolar bone defects

Materials Letters 2023 Volume 331, Article 133413

A modular reinforced bone scaffold with enhanced mechanical properties has recently been developed by our group. It includes: 1) A load-bearing module: a skeleton which is made of a slowly degradable material, undertaking mechanical necessities of the scaffold, and 2) A bio-reactive module: a porous and biodegradable component undertaking biological necessities of the scaffold. The load-bearing module is placed into the bio-reactive module to reinforce it. This paper is dedicated to optimizing the load-bearing module for a certain customized alveolar bone defect. More specifically, a 3D-printed skeleton, made of polycaprolactone (PCL), is optimized based on the boundary conditions of the…

The addition of zinc ions to polymer-ceramic composites accelerated osteogenic differentiation of human mesenchymal stromal cells

Biomaterials Advances 2023 Volume 149, Article 213391

Critical-sized bone defects, caused by congenital disorders or trauma, are defects that will not heal spontaneously and require surgical intervention. Recent advances in biomaterial design for the treatment of such defects focus on improving their osteoinductive properties. Here, we propose a bioactive composite with high ceramic content composed of poly(ethyleneoxide terephthalate)/poly(butylene terephthalate) (1000PEOT70PBT30, PolyActive, PA) and 50 % beta-tricalcium phosphate (β-TCP) with the addition of zinc in a form of a coating on the TCP particles. Due to its essential role in bone homeostasis, we hypothesised that the addition of zinc to the polymer-ceramic composite will further enhance its osteogenic…

Anisotropic, Strong, and Thermally Insulating 3D-Printed Nanocellulose–PNIPAAM Aerogels

Small Structures 2023 Article 2300073

Cellulose is a promising candidate for the fabrication of superinsulating materials, which would be of great interest for thermal management applications as well as for the scientific community. Until now, the production of strong cellulose-based aerogels has been dominated by traditional manufacturing processes, which have limited the possibilities to achieve the structural control and mechanical properties seen in natural materials such as wood. In this work, we show a simple but versatile method to fabricate cellulose aerogels in intricate geometries. We take advantage of the 3D printing technique direct ink writing to control both the shape and the thermal-mechanical properties…

Development of hybrid 3D-printed structure with aligned drug-loaded fibres using in-situ custom designed templates

Journal of Drug Delivery Science and Technology 2023 Volume 88, Article 104921

Fibre alignment technology is crucial in various emerging applications, such as drug delivery systems, tissue engineering, and scaffold fabrication. However, conventional methods have limitations when it comes to incorporating aligned fibres into 3D printed structures in situ. This research demonstrates the use of custom-designed templates made with conductive ink to control the alignment of drug-loaded polymer fibres on a 3D printed microscale structure. Three different geometries were designed, and the effects of the template on fibre diameter and pattern were investigated. The hybrid structure demonstrated successful control of aligned fibres on printed structures using grounded conductive ink geometric electrodes, as…

Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation

Biofabrication 2023 Volume 15, Number 1, Article 015020

Corneal transplantation remains gold standard for the treatment of severe cornea diseases, however, scarcity of donor cornea is a serious bottleneck. 3D bioprinting holds tremendous potential for cornea tissue engineering (TE). One of the key technological challenges is to design bioink compositions with ideal printability and cytocompatibility. Photo-crosslinking and ionic crosslinking are often used for the stabilization of 3D bioprinted structures, which can possess limitations on biological functionality of the printed cells. Here, we developed a hyaluronic acid-based dopamine containing bioink using hydrazone crosslinking chemistry for the 3D bioprinting of corneal equivalents. First, the shear thinning property, viscosity, and mechanical…

Bioprinting of alginate-carboxymethyl chitosan scaffolds for enamel tissue engineering in vitro

Biofabrication 2023 Volume 15, Issue 1, Article 015022

Tissue engineering offers a great potential in regenerative dentistry and to this end, three dimensional (3D) bioprinting has been emerging nowadays to enable the incorporation of living cells into the biomaterials (such a mixture is referred as a bioink in the literature) to create scaffolds. However, the bioinks available for scaffold bioprinting are limited, particularly for dental tissue engineering, due to the complicated, yet compromised, printability, mechanical and biological properties simultaneously imposed on the bioinks. This paper presents our study on the development of a novel bioink from carboxymethyl chitosan (CMC) and alginate (Alg) for bioprinting scaffolds for enamel tissue…

Efficiency assessment of wood and cellulose-based optical elements for terahertz waves

Optical Materials Express 2023 Volume 13, Issue 1, Pages 92-103

Polarized THz time domain spectroscopy was used to study the anisotropic properties of wood-based materials for potential optical elements in the THz range, such as half-wave and quarter-wave plates. Wood samples of different species and sample thickness were studied experimentally showing high birefringence but rather high absorption. We elaborate on two approaches to optimize the optical properties for use as wave plates and assess them based on a figure of merit describing their efficiency as a function of birefringence and absorption. The first approach is to dry the wood samples, which significantly improves the efficiency of wave plates. The second…

Development and In-Silico and Ex-Vivo Validation of a Software for a Semi-Automated Segmentation of the Round Window Niche to Design a Patient Specific Implant to Treat Inner Ear Disorders

Journal of Imaging 2023 Volume 9, Issue 2, Article 51

The aim of this study was to develop and validate a semi-automated segmentation approach that identifies the round window niche (RWN) and round window membrane (RWM) for use in the development of patient individualized round window niche implants (RNI) to treat inner ear disorders. Twenty cone beam computed tomography (CBCT) datasets of unilateral temporal bones of patients were included in the study. Defined anatomical landmarks such as the RWM were used to develop a customized 3D Slicer™ plugin for semi-automated segmentation of the RWN. Two otolaryngologists (User 1 and User 2) segmented the datasets manually and semi-automatically using the developed…

Silicone Ear Canal

3D-printed dual drug delivery nanoparticleloaded hydrogels to combat antibiotic-resistant bacteria

International Journal of Bioprinting 2023 Volume 9, Issue 3, Article 683

Implant-associated infections are not easy to diagnose and very difficult to treat, due to the ability of major pathogens, such as Staphylococcus aureus, to develop biofilms and escape the immune response and antibiotic treatment. We, therefore, aimed to develop a 3D-printed dual rifampicin (Rif)- and vancomycin (Van)-loaded polylacticco-glycolic acid (PLGA) nanoparticles (NPs) delivery system based on hydrogels made of gelatin methacrylate (GelMA). The release of Rif and Van from NPs manufactured from different PLGA molecular weights was studied in phosphate-buffered saline for 21 days. Low molecular weight PLGA NPs exhibited the fastest release of Rif and Van within the first…