3D Bioplotter Research Papers

Displaying all papers about Skin Regeneration (9 results)

Tuning thermoresponsive properties of carboxymethyl cellulose (CMC)–agarose composite bioinks to fabricate complex 3D constructs for regenerative medicine

International Journal of Biological Macromolecules 2024 Volume 260, Part 1, Article 129443

3D bioprinting has emerged as a viable tool to fabricate 3D tissue constructs with high precision using various bioinks which offer instantaneous gelation, shape fidelity, and cytocompatibility. Among various bioinks, cellulose is the most abundantly available natural polymer & widely used as bioink for 3D bioprinting applications. To mitigate the demanding crosslinking needs of cellulose, it is frequently chemically modified or blended with other polymers to develop stable hydrogels. In this study, we have developed a thermoresponsive, composite bioink using carboxymethyl cellulose (CMC) and agarose in different ratios (9:1, 8:2, 7:3, 6:4, and 5:5). Among the tested combinations, the 5:5…

Bioprinted scaffolds assembled as synthetic skin grafts by natural hydrogels containing fibroblasts and bioactive agents

International Journal of Polymeric Materials and Polymeric Biomaterials 2024 Volume 73, Issue 11, Pages 927–945

Hydrogel skin grafts provide a moist environment and act as a regenerative template to the newly formed tissue. In this study, we developed 3D-bio-printed hydrogels using methacrylated pectin and methacrylated gelatin together with an antibacterial agent (curcumin), a bioactive agent (Vitamin-C) and fibroblast cells. Curcumin release was almost 10 times higher at pH 7.4 than pH 5.0, and it demonstrated antimicrobial affinity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The developed 3D-bio-printed hydrogels containing cells and bioactive agents demonstrated high cell viability, cell proliferation, and collagen production, and are promising skin graft candidates for the treatment of full-thickness problematic…

Functionalized gelatin-alginate based bioink with enhanced manufacturability and biomimicry for accelerating wound healing

International Journal of Biological Macromolecules 2023 Volume 240, Article 124364

Three-dimensional (3D) bioprinting is a promising technique to construct heterogeneous architectures that mimic cell microenvironment. However, the current bioinks for 3D bioprinting usually show some limitations, such as low printing accuracy, unsatisfactory mechanical properties and compromised cytocompatibility. Herein, a novel bioink comprising hydroxyphenyl propionic acid-conjugated gelatin and tyramine-modified alginate is developed for printing 3D constructs. The bioink takes advantage of an ionic/covalent intertwined network that combines covalent bonds formed by photo-mediated redox reaction and ionic bonds formed by chelate effect. Benefiting from the thermosensitivity of gelatin and the double-crosslinking mechanism, the developed bioink shows controllable rheological behaviors, enhanced mechanical behavior,…

Stepwise Multi-Cross-Linking Bioink for 3D Embedded Bioprinting to Promote Full-Thickness Wound Healing

ACS Applied Materials & Interfaces 2023 Volume 15, Issue 20, Pages 24034–24046

The emergence and innovation of three-dimensional (3D) bioprinting provide new development opportunities for tissue engineering and regenerative medicine. However, how to obtain bioinks with both biomimicry and manufacturability remains a great issue in 3D bioprinting. Developing intelligent responsive biomaterials is conducive to break through the current dilemma. Herein, a stepwise multi-cross-linking strategy concerning thermosensitive thiolated Pluronic F127 (PF127-SH) and hyaluronic acid methacrylate (HAMA) is proposed to achieve temperature-controlled 3D embedded bioprinting, specifically pre-cross-linking (Michael addition reaction) at low temperatures (4–20 °C) and subsequently self-assembly (hydrophobic interaction) in a high-temperature (30–37 °C) suspension bath as well as final photo-cross-linking (mainly thiol-ene…

3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing

Chemical Engineering Journal 2023 Volume 471, Article 144649

Promoting rapid healing of diabetic wounds caused by hyperglycemia, bacterial infection, and chronic inflammation is a global challenge. To address this issue, we design and prepare a novel cerium-based MOF nanozyme hydrogel via 3D printing technology to provide a personalized hydrogel wound dressing. The hydrogel is unique in that cerium-based MOFs are grown into the hydrogel network, simplifying the printing process of MOF hydrogel. The prepared hydrogel exhibits specific catalytic activity to various oxygen free radicals and glucose concentration-dependent color changes due to the interconversion between different valence cerium ions. This feature allows for indirect monitoring of glucose content around…

Formulation of Dermal Tissue Matrix Bioink by a Facile Decellularization Method and Process Optimization for 3D Bioprinting toward Translation Research

Macromolecular Bioscience 2022 Volume 22, Issue 8, Article 2200109

Decellularized extracellular matrices (ECMs) are being extensively used for tissue engineering purposes and detergents are predominantly used for this. A facile detergent-free decellularization method is developed for dermal matrix and compared it with the most used detergent-based decellularization methods. An optimized, single-step, cost-effective Hypotonic/Hypertonic (H/H) Sodium Chloride (NaCl) solutions-based method is employed to decellularize goat skin that resulted in much higher yield than other methods. The ECM composition, mechanical property, and cytocompatibility are evaluated and compared with other decellularization methods. Furthermore, this H/H-treated decellularized dermal ECM (ddECM) exhibits a residual DNA content of <50 ng mg−1 of dry tissue. Moreover, 85.64 ± 3.01% of glycosaminoglycans…

Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells

International Journal of Biological Macromolecules 2023 Volume 229, Pages 849-860

The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G’) and loss (G”) moduli and the G’ recovery capacity of the hydrogels (from 70.05 ± 3.06 % (90:10) to 82.63 ± 1.21 % (60:40)), as well as their mechanical properties, increasing the compressive stiffness…

3D bioprinting dermal-like structures using species-specific ulvan

Biomaterials Science 2021 Volume 9, Pages 2424-2438

3D bioprinting has been increasingly employed in skin tissue engineering for manufacturing living constructs with three-dimensional spatial precision and controlled architecture. There is however, a bottleneck in the tunability of bioinks to address specific biocompatibility challenges, functional traits and printability. Here we report on a traditional gelatin methacryloyl (GelMA) based bioink, tuned by addition of an ulvan type polysaccharide, isolated from a cultivated source of a specific Australian Ulvacean macroalgae (Ul84). Ul84 is a sulfate- and rhamnose-rich polysaccharide, resembling mammalian glycosaminoglycans that are involved in wound healing and tissue matrix structure and function. Printable bioinks were developed by addition of…

Tyrosinase-doped bioink for 3D bioprinting of living skin constructs

Biomedical Materials 2018 Volume 13, Number 3, Article Number 035008

Three-dimensional bioprinting is an emerging technology for fabricating living 3D constructs, and it has shown great promise in tissue engineering. Bioinks are scaffold materials mixed with cells used by 3D bioprinting to form a required cell-laden structure. In this paper, a novel bioink made of gelatin methacrylamide (GelMA) and collagen (Col) doped with tyrosinase (Ty) is presented for the 3D bioprinting of living skin tissues. Ty has the dual function of being an essential bioactive compound in the skin regeneration process and also as an enzyme to facilitate the crosslink of Col and GelMA. Further, enzyme crosslinking together with photocrosslinking…