3D Bioplotter Research Papers
Silk fibroin/polyacrylamide-based tough 3D printing scaffold with strain sensing ability and chondrogenic activity
Cartilage tissue plays an important role in our life activities. The poor self-repair capacity makes cartilage tissue engineering an urgent clinical demand. Among them, the development of tissue engineering scaffolds with both biomimetic features and microenvironment signal sensing abilities could significantly promote the development of cartilage tissue engineering. While most of the reported cartilage scaffolds have no intelligent sensing features. Herein, a ternary composite 3D printing scaffold with both strain sensing ability and desired mechanical property was developed, by using regenerated silk fibroin (RSF) and polyacrylamide (PAM) as main matrixes, and oxidized bacterial cellulose nanofibers (OBC) as filler. Then, the…
Degradation behavior of polylactic-co-glycolic acid and polycaprolactone with nanosilver scaffolds
Ureteral stents are commonly used in clinical treatment of ureteral diseases. There were a series of complications, such as biofilms and crusts caused by bacteria after surgery. Therefore, biodegradable with bacteriostatic ureteral scaffolds would be the potential to solve above mentioned problems. In this study, nanosilver (AgNP) was added to the polylactic-co-glycolic acid (PLGA) and polycaprolactone (PCL) to prepare biodegradable antibacterial ureteral scaffold samples by 3D printing. The biocompatibility, antibacterial properties, degradability, and mechanical properties of samples were observed. The samples were under a strong inhibitory effect on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the…
Switch-on mode of bioenergetic channels regulated by curcumin-loaded 3D composite scaffold to steer bone regeneration
Metabolic energy to steer osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs) could be a promising therapeutic target for bone tissue engineering (BTE), but prior knowledge of this issue is limited. To address bone defects with BTE, we customized a three-dimensional (3D)-printed composite scaffold (Cur@MS) to allow the controlled release of curcumin, which could facilitate the “switch-on” mode of Glucose transporter 1 (GLUT1) in BMSCs. Consequently, bioenergetic channels, i.e. glucose uptake, were “switched on” to activate GLUT1-RUNX2 crosstalk, which was closely orchestrated with bone regeneration. Furthermore, curcumin-induced cholesterol/lipid raft (Cho/LR) was a “sensor” to trigger the “switch” (GLUT1) by…
BC enhanced photocurable hydrogel based on 3D bioprinting for nasal cartilage repair
The repair of nasal cartilage lesions and defects is still a difficult problem in nasal surgery, and nasal cartilage tissue engineering will be an effective way to solve this problem. Hydrogel has excellent application potential in tissue engineering. In order to produce a 3D printable scaffold for cartilage regeneration, we prepared gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA)/bacterial cellulose (BC) composite hydrogel. The composite hydrogel was characterized by swelling, mechanical properties, and printing performance test. Compared with GelMA/HAMA hydrogel, the addition of BC not only significantly enhanced the mechanical properties of the hydrogels, but also improved the printing fidelity. At the…
3D-printed strong hybrid materials with low shrinkage for dental restoration
Flowable photocurable resins can be printed effectively by stereolithographic 3D printing for dental applications; however, the 3D-printed objects’ mechanical properties cannot meet the requirements for the dental restorative materials. In this study, a strong customized crown for tooth repair was first prepared via direct ink writing 3D printing from a high-viscosity hybrid paste of acrylic monomer and multi-scale inorganic particles. The results showed that the hybrid resin-based composites (RBCs) could be printed successfully and smoothly through a metal nozzle with a gradually shrinking channel. The theoretical simulation of finite element methods was consistent with the experiment results. The printed objects…
Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis
Repair of large bone defects represents a major challenge for orthopedic surgeons. The newly formed microvessels inside grafts play a crucial role in successful bone tissue engineering. Previously, an active role for mesenchymal stem cell (MSC)-derived exosomes in blood vessel development and progression was suggested in the repair of multiple tissues. However, the reports on the application of MSC-derived exosomes in the repair of large bone defects are sparse. In this study, we encapsulated umbilical MSC-derived exosomes (uMSCEXOs) in hyaluronic acid hydrogel (HA-Gel) and combined them with customized nanohydroxyapatite/poly-ε-caprolactone (nHP) scaffolds to repair cranial defects in rats. Imaging and histological…
3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration
Hydrogel scaffolds are attractive for tissue defect repair and reorganization because of their human tissue-like characteristics. However, most hydrogels offer limited cell growth and tissue formation ability due to their submicron- or nano-sized gel networks, which restrict the supply of oxygen, nutrients and inhibit the proliferation and differentiation of encapsulated cells. In recent years, 3D printed hydrogels have shown great potential to overcome this problem by introducing macro-pores within scaffolds. In this study, we fabricated a macroporous hydrogel scaffold through horseradish peroxidase (HRP)-mediated crosslinking of silk fibroin (SF) and tyramine-substituted gelatin (GT) by extrusion-based low-temperature 3D printing. Through physicochemical characterization,…
Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis
In this study, porous bioglass/gelatin/alginate bone tissue engineering scaffolds were fabricated by three-dimensional printing. The compressive strength and in vitro biomineralization properties of the bioglass–gelatin–alginate scaffolds (BG/Gel/SA scaffolds) were significantly improved with the increase of bioglass content until 30% weight percentage followed by a rapid decline in strength. In addition, the cells attach and spread on the BG/Gel/SA scaffolds surfaces represents good adhesion and biocompatibility. Furthermore, the cells (rat bone marrow mesenchymal stem cells, mBMSCs) proliferation and osteogenic differentiation on the BG/Gel/SA scaffolds were also promoted with the increase of bioglass content. Overall, the adding of bioglass in Gel/SA scaffolds…
A novel vehicle-like drug delivery 3D printing scaffold and its applications for a rat femoral bone repairing in vitro and in vivo
The high surface area ratio and special structure of mesoporous bioactive glass (MBG) endow it with excellent physical adsorption of various drugs without destroying the chemical activity. Silicate 1393 bioactive glass (1393) is famous for its fantastic biodegradability and osteogenesis. Herein, we have built a novel vehicle-like drug delivery 3D printing scaffold with multiplexed drug delivery capacity by coating MBG on the surface of 1393 (1393@MBG). Furthermore, we have applied DEX and BMP-2 on the 1393@MBG scaffold to endow it with antibacterial and osteogenic properties. Results indicated that this 1393@MBG scaffold could effectively load and controlled release BMP-2, DNA and…
Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair
With the increasing applications of 3D printing technology in biomedical field, the composition or additives of the related materials has become critical for the next development. In the current study, we have prepared 3D printed polycaprolactone-hydroxyapatite (PCL-HA) porous scaffolds with loaded heparan sulfate (HS), in order to reveal the reparative effect of different concentrations of HS on the healing of bone defects. As a result, the scaffold itself showed sound compression resistance, air porosity and good biocompatibility. From both in vitro and in vivo experiments, the scaffold with low concentration of HS led to positive effects in promoting osteoblast maturation…
Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores
One of the latest trends in the regenerative medicine is the development of 3D-printing hydrogel scaffolds with biomimetic structures for tissue regeneration and organ reconstruction. However, it has been practically difficult to achieve a highly biomimetic hydrogel scaffolds with proper mechanical properties matching the natural tissue. Here, bacterial cellulose nanofibers (BCNFs) were applied to improve the structural resolution and enhance mechanical properties of silk fibroin (SF)/gelatin composite hydrogel scaffolds. The SF-based hydrogel scaffolds with hierarchical pores were fabricated via 3D-printing followed by lyophilization. Results showed that the tensile strength of printed sample increased significantly with the addition of BCNFs in…
3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering
The fabrication of bone tissue engineering scaffolds with high osteogenic ability and favorable mechanical properties is of huge interest. In this study, a silk fibroin (SF) solution of 30 wt% was extracted from cocoons and combined with mesoporous bioactive glass (MBG) to fabricate MBG/SF composite scaffolds by 3D printing. The porosity, compressive strength, degradation and apatite forming ability were evaluated. The results illustrated that MBG/SF scaffolds had superior compressive strength (ca. 20 MPa) and good biocompatibility, and stimulated bone formation ability compared to mesoporous bioactive glass/polycaprolactone (MBG/PCL) scaffolds. We subcutaneously transplanted hBMSCs-loaded MBG/SF and MBG/PCL scaffolds into the back of nude mice…
Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects
The development of a new generation of biomaterials with high osteogenic ability for fast osseointegration with host bone is being intensively investigated. In this study, we have fabricated three-dimensional (3-D) strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds by a 3-D printing technique. Sr-MBG scaffolds showed uniform interconnected macropores (∼400 μm), high porosity (∼70%) and enhanced compressive strength (8.67 ± 1.74 MPa). Using MBG scaffolds as a control, the biological properties of Sr-MBG scaffolds were evaluated by apatite-forming ability, adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteoblast-like cells MC3T3-E1. Furthermore, Sr-MBG scaffolds were used to repair critical-sized rat calvarial…
3D-Printed Magnetic Fe3O4/MBG/PCL Composite Scaffolds with Multifunctionality of Bone Regeneration, Local Anticancer Drug Delivery and Hyperthermia
In this study, three-dimensional (3D) magnetic Fe3O4 nanoparticles containing mesoporous bioactive glass/polycaprolactone (Fe3O4/MBG/PCL) composite scaffolds have been fabricated by the 3D-printing technique. The physiochemical properties, in vitro bioactivity, anticancer drug delivery, mechanical strength, magnetic heating ability and cell response of Fe3O4/MBG/PCL scaffolds were systematically investigated. The results showed that Fe3O4/MBG/PCL scaffolds had uniform macropores of 400 μm, high porosity of 60% and excellent compressive strength of 13–16 MPa. The incorporation of magnetic Fe3O4 nanoparticles into MBG/PCL scaffolds did not influence their apatite mineralization ability but endowed excellent magnetic heating ability and significantly stimulated proliferation, alkaline phosphatase (ALP) activity, osteogenesis-related gene…