3D Bioplotter Research Papers
3D printing of gelatin/chitosan biodegradable hybrid hydrogel: Critical issues due to the crosslinking reaction, degradation phenomena and process parameters
Hydrogel materials are being investigated for application as scaffolds in tissue engineering owing to their many advantages, such as high water content, softness and flexibility similar to many soft tissues, tuneable physical, chemical, and biological properties, excellent biocompatibility and biodegradability, and extensive framework for cell proliferation and survival. During the past decade, because of the great versatility offered in terms of processing approach, material selection, and customization, 3D printing has become a leading technology used to fabricate hydrogel scaffolds. Furthermore, high reproducibility and unparalleled control over structural and compositional characteristics make additive manufacturing the preferred technology for the fabrication of…
Mechanistic understanding of the performance of personalized 3D-printed cardiovascular polypills: A case study of patient-centered therapy
The 3D printing has become important in drug development for patient-centric therapy by combining multiple drugs with different release characteristics in a single polypill. This study explores the critical formulation and geometric variables for tailoring the release of Atorvastatin and Metoprolol as model drugs in a polypill when manufactured via pressure-assisted-microextrusion 3D printing technology. The effects of these variables on the extrudability of printing materials, drug release and other quality characteristics of polypills were studied employing a definitive screening design. The extrudability of printing materials was evaluated in terms of flow pressure, non-recoverable strain, compression rate, and elastic/plastic flow. The…
Polymer Materials And Their Usage In Veterinary Practice
In the field of regenerative medicine and tissue engineering, the use of such materials has been included for a short time, serving not only as a replacement for damaged or missing tissue, but also as a support for the surrounding tissues and cells. Such materials should not only be passively tolerated by the cell, but should also actively promote the growth, differentiation and other processes involved in tissue regeneration. The latest approach is the use and development of bioresorbable and biodegradable polymeric materials. Such materials, with their biocompatibility, degradability and suitable mechanical properties, support the overgrowth of new tissue. The…
Gas Phase Alloying and Sintering Kinetics of 3D Printed Ni-Based Structures
Porous materials, including foams and lattice structures, are used in many applications such as biomedical implants, heat exchangers, catalysts, and batteries due to their light weight, high surface area and energy absorption properties. Lattice structures, specifically, are of great interest since their properties can be tailored by employing various design methodologies (e.g., topology optimization). On the other hand, Ni-based superalloys are used in many applications where high-temperature and oxidation/corrosion resistance are important such as in gas turbine components. The advantageous properties of these Ni-Cr-Al-based alloys with the geometry and tailored mechanical properties of lattice structures can be combined through a…
4D Printing Classroom in Modern Interactive Learning Environments
The emergence of four-dimensional (4D) printing and bioprinting in additive manufacturing (AM), which require knowledge of multi-physics, chemistry, and engineering skills, are bringing many engineering applications in biomedical devices, wearables, and robotics. This newly emerging technology has become a feasible commercial proposition because of lower costs, more design freedom, and more rapid production methods. This serves as a significant multidisciplinary research and training platform for both academia and the professional world. This work aims at enhancing researchers’ interest, knowledge, and skills in the emerging field of 4D printing and bioprinting. A greater knowledge of 4D printing and promotion of its…
3D-printed strong hybrid materials with low shrinkage for dental restoration
Flowable photocurable resins can be printed effectively by stereolithographic 3D printing for dental applications; however, the 3D-printed objects’ mechanical properties cannot meet the requirements for the dental restorative materials. In this study, a strong customized crown for tooth repair was first prepared via direct ink writing 3D printing from a high-viscosity hybrid paste of acrylic monomer and multi-scale inorganic particles. The results showed that the hybrid resin-based composites (RBCs) could be printed successfully and smoothly through a metal nozzle with a gradually shrinking channel. The theoretical simulation of finite element methods was consistent with the experiment results. The printed objects…
In situ loading and x-ray diffraction quantification of strains in hydroxyapatite particles within a 3D printed scaffold
A 3D printed scaffold consisting of a composite with very high volume fraction of particulate hydroxyapatite (hAp, 74 vol.%) and small volume fraction of poly-lactic-co-glycolic acid (26 vol.%) was loaded in compression, and the internal strains in the hAp phase were measured by high-energy x-ray diffraction. Diffraction patterns were recorded at multiple positions in the scaffold at cross-head displacements of 0, -0.52 and -0.62 mm (2.0 mm total scaffold height). The 00.2 and 21.0 hAp strains never exceeded 2 × 10−4, and most positions showed strains ≤ 1 × 10−4, which was the magnitude of the experimental uncertainty.
MI192 induced epigenetic reprogramming enhances the therapeutic efficacy of human bone marrows stromal cells for bone regeneration
Human bone marrow stromal cells (hBMSCs) have been extensively utilised for bone tissue engineering applications. However, they are associated with limitations that hinder their clinical utility for bone regeneration. Cell fate can be modulated via altering their epigenetic functionality. Inhibiting histone deacetylase (HDAC) enzymes have been reported to promote osteogenic differentiation, with HDAC3 activity shown to be causatively associated with osteogenesis. Therefore, this study aimed to investigate the potential of using an HDAC2 & 3 selective inhibitor – MI192 to induce epigenetic reprogramming of hBMSCs and enhance its therapeutic efficacy for bone formation. Treatment with MI192 caused a time-dose dependant…
Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network
We report herein the fabrication of a pectin-based scaffold (6 wt% pectin, 3 wt% alginate) with high resolution (small-diameter rods), small pores, and interconnected porosity using a low temperature 3D printing process known as freeze-printing. The ability to successfully print natural polymers has been a long-standing challenge in the field of additive manufacturing of polymeric tissue scaffolds. This is due to the slow evaporation rate of the aqueous solvent, which leads to unstable structures. This problem has been addressed by utilizing the fast solidification rate of the freeze-printing process. Scaffolds with a hgresolution (rod-diameter of 83 ± 14 µm), small…
3D printed hydrogels for oral personalized medicine
3D printing has become a promising and revolutionary pill-making technique for the pharmaceutical industry, enabling a relatively low-cost personalized medicine. Fused deposition modelling, also known by its initials FDM, is the most affordable technology for this goal, printing the material by a layer-by-layer deposition. However, the pressure assisted microsyringe technique is more adequate for working with drug containing inks as it does not need high temperatures, preventing the drug degradation. However, to make this goal possible, high accuracy and reproducibility is required, avoiding trial and error procedures. Thus, a correlation between rheology, printing parameters and the printed object was investigated.…