3D Bioplotter Research Papers

Displaying all papers from 2016 (36 results)

Development of a 3D Printed, Bioengineered Placenta Model to Evaluate the Role of Trophoblast Migration in Preeclampsia

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 10, Pages 1817–1826

Preeclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality. Current research suggests that the impaired trophoblastic invasion of maternal spiral arteries contributes significantly to the development of PE. However, the pathobiology of PE remains poorly understood, and there is a lack of treatment options largely due to ineffective experimental models. Utilizing the capability of bioprinting and shear wave elastography, we developed a 3D, bioengineered placenta model (BPM) to study and quantify cell migration. Through BPM, we evaluated the effect of epidermal growth factor (EGF) on the migratory behavior of trophoblast and human mesenchymal stem cells. Our…

Iron and Nickel Cellular Structures by Sintering of 3D-Printed Oxide or Metallic Particle Inks

Advanced Engineering Materials 2016 Volume 19, Issue 11, Article 1600365

Inks comprised of metallic Fe or Ni powders, an elastomeric binder, and graded volatility solvents are 3D-printed via syringe extrusion and sintered to form metallic cellular structures. Similar structures are created from Fe2O3 and NiO particle-based inks, with an additional hydrogen reduction step before sintering. All sintered structures exhibit 92–98% relative density within their struts, with neither cracking nor visible warping despite extensive volumetric shrinkage (≈70–80%) associated with reduction (for oxide powders) and sintering (for both metal and oxide powders). The cellular architectures, with overall relative densities of 32–49%, exhibit low stiffness (1–6 GPa, due to the particular architecture used), high…

Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments

Biomaterials 2016 Volume 82, Pages 151–167

In tissue engineering, non-invasive imaging of biomaterial scaffolds and tissues in living systems is essential to longitudinal animal studies for assessments without interrupting the repair process. Conventional X-ray imaging is inadequate for use in soft tissue engineering due to the limited absorption difference between the soft tissue and biomaterial scaffolds. X-ray phase-based imaging techniques that derive contrast from refraction or phase effects rather than absorption can provide the necessary contrast to see low-density biomaterial scaffolds and tissues in large living systems. This paper explores and compares three synchrotron phase-based X-ray imaging techniques—computed tomography (CT)-diffraction enhanced imaging (DEI), -analyzer based imaging…

Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair

Journal of Materials Science 2016 Volume 51, Issue 2, Pages 836-844

In the study, we developed hierarchical composite scaffolds by 3D printing technique with mesoporous CaSiO3 containing controlled amounts of Ce substitution in Ca–Si system. The scaffolds were porous with 3D interconnected large pores (size ~400 μm) and an overall porosity above 70 %, combined with a relative high compressive strength (~7 MPa). These properties are essential for enhancing bone ingrowth in tissue engineering. The in vitro biological properties of apatite formation, cell proliferation, and differentiation were characterized on CeO2-MCS scaffolds and MCS scaffolds. Results indicated that CeO2-MCS scaffolds induced similar apatite deposition and cell attachment of human bone marrow stromal…

Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network

ACS Applied Materials & Interfaces 2016 Volume 8, Issue 3, Pages 2187–2192

The combination of carbon nanomaterial with three-dimensional (3D) porous polymer substrates has been demonstrated to be an effective approach to manufacture high-performance stretchable conductive materials (SCMs). However, it remains a challenge to fabricate 3D-structured SCMs with outstanding electrical conductivity capability under large strain in a facile way. In this work, the 3D printing technique was employed to prepare 3D porous poly(dimethylsiloxane) (O-PDMS) which was then integrated with carbon nanotubes and graphene conductive network and resulted in highly stretchable conductors (OPCG). Two types of OPCG were prepared, and it has been demonstrated that the OPCG with split-level structure exhibited both higher…

Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro characterization for use in nerve regeneration

Bioprinting 2016 Volume 5, March 2017, Pages 1-9

The blood clotting protein fibrin contains cell-binding domains, providing potential advantage for the fabrication of tissue repair scaffolds and for live cell encapsulation. However, fabrication of fibrin scaffolds with encapsulated cells using three dimensional (3D) printing has proven challenging due to the mechanical difficulties of fabricating protein hydrogel scaffolds with defined microstructure. For example, extrusion based 3D printing of fibrin is generally unfeasible because of the low viscosity of precursor fibrinogen solution. Here we describe a novel technique for bioprinting of fibrin scaffolds by extruding fibrinogen solution into thrombin solution, utilizing hyaluronic acid (HA) and polyvinyl alcohol (PVA) to increase…

Hyperelastic “bone”: A highly versatile, growth factor–free, osteoregenerative, scalable, and surgically friendly biomaterial

Science Translational Medicine 2016 Volume 8, Issue 358, Pages 358ra127

Despite substantial attention given to the development of osteoregenerative biomaterials, severe deficiencies remain in current products. These limitations include an inability to adequately, rapidly, and reproducibly regenerate new bone; high costs and limited manufacturing capacity; and lack of surgical ease of handling. To address these shortcomings, we generated a new, synthetic osteoregenerative biomaterial, hyperelastic “bone” (HB). HB, which is composed of 90 weight % (wt %) hydroxyapatite and 10 wt % polycaprolactone or poly(lactic-co-glycolic acid), could be rapidly three-dimensionally (3D) printed (up to 275 cm3/hour) from room temperature extruded liquid inks. The resulting 3D-printed HB exhibited elastic mechanical properties (~32…

Fabrication of biocompatible enclosures for an electronic implant using 3D printing

International Journal of Rapid Manufacturing 2016 Volume 6, Issue 1, Pages 17-33

A variety of different approaches have been employed to enable implantation of electronic medical microdevices. A novel method of producing low-cost, rapidly fabricated implantable enclosures from biocompatible silicone is presented in this paper. This method utilises 3D computer-aided design software to design and model the enclosures prior to fabrication. The enclosures are then fabricated through additive manufacturing from biocompatible silicone using a 3D bioprinter. In this paper, four different implantable enclosure designs are presented. A prototyping stage with three different prototypes is described, these prototype enclosures are then evaluated through submersion and operation tests. A final design is developed in…

3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation

Biofabrication 2016 Volume 8, Issue 3, 035002

In this work we demonstrate how to print 3D biomimetic hydrogel scaffolds for cartilage tissue engineering with high cell density (>107 cells ml−1), high cell viability (85 ÷ 90%) and high printing resolution (≈100 μm) through a two coaxial-needles system. The scaffolds were composed of modified biopolymers present in the extracellular matrix (ECM) of cartilage, namely gelatin methacrylamide (GelMA), chondroitin sulfate amino ethyl methacrylate (CS-AEMA) and hyaluronic acid methacrylate (HAMA). The polymers were used to prepare three photocurable bioinks with increasing degree of biomimicry: (i) GelMA, (ii) GelMA + CS-AEMA and (iii) GelMA + CS-AEMA + HAMA. Alginate was added…

Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo

PloS One 2016 Volume 11, Issue 6, e0157214

Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3D) bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN). Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E) staining,…

Synchrotron-Based in Situ Characterization of the Scaffold Mass Loss from Erosion Degradation

Journal of Functional Biomaterials 2016 Volume 7, Issue 3, 17

The mass loss behavior of degradable tissue scaffolds is critical to their lifespan and other degradation-related properties including mechanical strength and mass transport characteristics. This paper presents a novel method based on synchrotron imaging to characterize the scaffold mass loss from erosion degradation in situ, or without the need of extracting scaffolds once implanted. Specifically, the surface-eroding degradation of scaffolds in a degrading medium was monitored in situ by synchrotron-based imaging; and the time-dependent geometry of scaffolds captured by images was then employed to estimate their mass loss with time, based on the mathematical model that was adopted from the…

PCL Imaging

3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 7, Pages 1200–1210

Hydrogels are particularly attractive as scaffolding materials for cartilage tissue engineering because their high water content closely mimics the native extracellular matrix (ECM). Hydrogels can also provide a three-dimensional (3D) microenvironment for homogeneously suspended cells that retains their rounded morphology and thus facilitates chondrogenesis in cartilage tissue engineering. However, fabricating hydrogel scaffolds or cell-laden hydrogel constructs with a predesigned external shape and internal structure that does not collapse remains challenging because of the low viscosity and high water content of hydrogel precursors. Here, we present a study on the fabrication of (cell-laden) alginate hydrogel constructs using a 3D bioplotting system…

Building the basis for patient-specific meniscal scaffolds: From human knee MRI to fabrication of 3D printed scaffolds

Bioprinting 2016 Volumes 1–2, Pages 1–10

The current strategies for the transplantation of meniscus should be strengthened to tackle the faced limitations of current methods in the clinics. One of the limitations is that current implants are not patient-specific. There is, therefore, a pressing need in the clinics to develop patient-specific implants. The aim of this study was to demonstrate a semi-automatic way of segmenting meniscus tissues from patients’ volumetric knee magnetic resonance imaging (MRI) datasets in order to obtain patient-specific 3D models for 3D printing of patient-specific constructs. High-quality MRI volumetric images were acquired from five healthy male human subjects. The advanced segmentation software, RheumaSCORE,…

Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering

Journal of Synchrotron Radiation 2016 Volume 23, Issue 3, Pages 802-812

Synchrotron radiation inline phase-contrast imaging combined with computed tomography (SR-inline-PCI-CT) offers great potential for non-invasive characterization and three-dimensional visualization of fine features in weakly absorbing materials and tissues. For cartilage tissue engineering, the biomaterials and any associated cartilage extracellular matrix (ECM) that is secreted over time are difficult to image using conventional absorption-based imaging techniques. For example, three-dimensional printed polycaprolactone (PCL)/alginate/cell hybrid constructs have low, but different, refractive indices and thicknesses. This paper presents a study on the optimization and utilization of inline-PCI-CT for visualizing the components of three-dimensional printed PCL/alginate/cell hybrid constructs for cartilage tissue engineering. First, histological analysis…

In vitro characterization of design and compressive properties of 3D-biofabricated/decellularized hybrid grafts for tracheal tissue engineering

Journal of the Mechanical Behavior of Biomedical Materials 2016 Volume 59, Pages 572–585

Infection or damage to the trachea, a thin walled and cartilage reinforced conduit that connects the pharynx and larynx to the lungs, leads to serious respiratory medical conditions which can often prove fatal. Current clinical strategies for complex tracheal reconstruction are of limited availability and efficacy, but tissue engineering and regenerative medicine approaches may provide viable alternatives. In this study, we have developed a new “hybrid graft” approach that utilizes decellularized tracheal tissue along with a resorbable polymer scaffold, and holds promise for potential clinical applications. First, we evaluated the effect of our decellularization process on the compression properties of…

Conductive Composite Fibres from Reduced Graphene Oxide and Polypyrrole Nanoparticles

Journal of Materials Chemistry B 2016 Volume 4, Issue 6, Pages 1142-1179

Continuous composite fibres composed of polypyrrole (PPy) nanoparticles and reduced graphene oxide (rGO) at different mass ratios were fabricated using a single step wet-spinning approach. The electrical conductivity of the composite fibres increased significantly with the addition of rGO. The mechanical properties of the composite fibres also improved by the addition of rGO sheets compared to fibres containing only PPy. The ultimate tensile strength of the fibres increased with the proportion of rGO mass present. The elongation at break was greatest for the composite fibre containing equal mass ratios of PPy nanoparticles and rGO sheets. L929 fibroblasts seeded onto fibres…

[Osteogenesis of human adipose-derived mesenchymal stem cells-biomaterial mixture in vivo after 3D bio-printing]

Journal of Peking University. Health Sciences 2016 Volume 48, Issue 1, Pages 45-50

To construct human adipose-derived mesenchymal stem cells (hASCs)-biomaterial mixture 3D bio-printing body and detect its osteogenesis in vivo, and to establish a guideline of osteogenesis in vivo by use of 3D bio-printing technology preliminarily.P4 hASCs were used as seed cells, whose osteogenic potential in vitro was tested by alkaline phosphatase (ALP) staining and alizarin red staining after 14 d of osteogenic induction. The cells were added into 20 g/L sodium alginate and 80 g/L gelatin mixture (cell density was 1×10(6)/mL), and the cell-sodium alginate-gelatin mixture was printed by Bioplotter 3D bio-printer (Envision company, Germany), in which the cells’survival rate was…

Accelerated vascularization of tissue engineering constructs in vivo by preincubated co-culture of aortic fragments and osteoblasts

Biochemical Engineering Journal 2016 Volume 105, Part A, Pages 230–241

There is an urgent critical need for the development of clinically relevant tissue-engineered large bone substitutes that can promote early vascularization after transplantation. To promote rapid blood vessel growth in the engineered tissue, we preincubated aortic fragments, as well as, co-cultures of aortic fragments and osteoblast-like cells in matrigel-filled PLGA scaffolds before implantation into the dorsal skinfold chambers of balb/c mice. Despite an acceptable and low inflammatory response, preincubated aortic fragments accelerate early angiogenesis of tissue-engineered constructs; the angiogenesis was found to occur faster than that observed in previous studies. Thus, the time-period for achieving a denser microvascular network could…

Diffraction tomography and Rietveld refinement of a hydroxyapatite bone phantom

Journal of Applied Crystallography 2016 Volume 49, Pages 103-109

A model sample consisting of two different hydroxyapatite (hAp) powders was used as a bone phantom to investigate the extent to which X-ray diffraction tomography could map differences in hAp lattice constants and crystallite size. The diffraction data were collected at beamline 1-ID, the Advanced Photon Source, using monochromatic 65 keV X-radiation, a 25 × 25 µm pinhole beam and translation/rotation data collection. The diffraction pattern was reconstructed for each volume element (voxel) in the sample, and Rietveld refinement was used to determine the hAp lattice constants. The crystallite size for each voxel was also determined from the 00.2 hAp…

Hydroxyapatite PLLA

Exploring the Potential of Starch/Polycaprolactone Aligned Magnetic Responsive Scaffolds for Tendon Regeneration

Advanced Healthcare Materials 2016 Volume 5, Issue 2, pages 213–222

The application of magnetic nanoparticles (MNPs) in tissue engineering (TE) approaches opens several new research possibilities in this field, enabling a new generation of multifunctional constructs for tissue regeneration. This study describes the development of sophisticated magnetic polymer scaffolds with aligned structural features aimed at applications in tendon tissue engineering (TTE). Tissue engineering magnetic scaffolds are prepared by incorporating iron oxide MNPs into a 3D structure of aligned SPCL (starch and polycaprolactone) fibers fabricated by rapid prototyping (RP) technology. The 3D architecture, composition, and magnetic properties are characterized. Furthermore, the effect of an externally applied magnetic field is investigated on…

Material design and photo-regulated hydrolytic degradation behavior of tissue engineering scaffolds fabricated via 3D fiber deposition

Journal of Materials Chemistry B 2016 Volume 5, Pages 329-340

An ideal behavior of a tissue engineering scaffold is that it degrades and reshapes at a rate that matches the formation of new tissues. However, this ideal situation may not occur as the scaffold often undergoes too slow or too fast degradation. To test the promise of the active control of scaffold degradation, in this work, a photo/water dual-degradable porous scaffold was designed and fabricated using a 3D fiber deposition (3DF) system from a linear biopolymer (named PLANB) that combined the o-nitrobenzyl linkages and hydrolysable ester bone in the polymer chains. The chemical structure, molecular weight and polydispersity of PLANB…

The effect of calcium sulfate incorporation on physiochemical and biological properties of 3D-printed mesoporous calcium silicate cement scaffolds

Microporous and Mesoporous Materials 2016 Volume 241, Issue 15, Pages 11–20

Development of 3D porous scaffolds with proper mechanical strength is crucial in bone tissue engineering. In this study, calcium sulfate hemihydrate (CSH) cement was functionally incorporated into mesoporous calcium silicate (MCS) through a 3D printing technique in order to improve the scaffold strength. Compared to printed MCS scaffolds, the characterizations revealed that 20% CSH incorporation had enhanced their compressive strength by 2 times via 4 weeks’ hydration. Furthermore, CSH incorporation prevented the fast pH value rise and achieved a balanced degradation rate. SEM observations showed a good apatite formation on the surfaces of both MCS and MCS/CSH scaffolds. Cellular experiments…

3D scaffold with effective multidrug sequential release against bacteria biofilm

Acta Biomaterialia 2016 Volume 49, Pages 113–126

Bone infection is a feared complication following surgery or trauma that remains as an extremely difficult disease to deal with. So far, the outcome of therapy could be improved with the design of 3D implants, which combine the merits of osseous regeneration and local multidrug therapy so as to avoid bacterial growth, drug resistance and the feared side effects. Herein, hierarchical 3D multidrug scaffolds based on nanocomposite bioceramic and polyvinyl alcohol (PVA) prepared by rapid prototyping with an external coating of gelatin-glutaraldehyde (Gel-Glu) have been fabricated. These 3D scaffolds contain three antimicrobial agents (rifampin, levofloxacin and vancomycin), which have been…

Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration

Journal of Materials Chemistry B 2016 Volume 4, Pages 7452-7463

Bone defects, particularly large bone defects resulting from infections, trauma, surgical resection or genetic malformations, maintain a significant challenge for clinicians. In this study, the tricalcium silicate/mesoporous bioactive glass (C3S/MBG) cement scaffolds were successfully fabricated for the first time by 3D printing with a curing process, which combined the hydraulicity of C3S with the excellent biological property of MBG together. The C3S/MBG scaffolds exhibited 3D interconnected macropores (~400μm), high porosity (~70%), enhanced mechanical strength (>12MPa) and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on the scaffolds to evaluate their cell responses, and the results…

3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine

Acta Biomaterialia 2016 Volume 45, Pages 349–356

The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca10(PO4)5.7(SiO4)0.3(OH)1.7h0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SNA15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium…

Fabrication and characterization of bioactive glass/alginate composite scaffolds by a self-crosslinking processing for bone regeneration

RSC Advances 2016 Volume 6, Pages 91201-91208

The aim of this study was to synthesize and characterize self-crosslinked bioactive glass/alginate composite scaffolds, as a kind of potential biomaterial for bone regeneration. The scaffolds were fabricated through a self-crosslinking process of alginate by bioactive glass microspheres provided Ca2+ completely, without any organic solvent, crosslinking agent or binder. The microstructure, mechanical properties, apatite-forming ability, ionic release, adhesion, proliferation and ALP activity of human bone marrow-derived mesenchymal stem cells (hBMSCs) of the scaffolds were evaluated. The results showed that uniform films could be obtained on the surface as well as abundant of crosslinking bridges in the interior of scaffolds. The…

In vitro colonization of stratified bioactive scaffolds by pre-osteoblast cells

Acta Biomaterialia 2016 Volume 44, Issue 15, Pages 73–84

Mesoporous bioactive glass-polycaprolactone (MBG-PCL) scaffolds have been prepared by robocasting, a layer by layer rapid prototyping method, by stacking of individual strati. Each stratus was independently analyzed during the cell culture tests with MC3T3-E1 preosteblast-like cells. The presence of MBG stimulates the colonization of the scaffolds by increasing the cell proliferation and differentiation. MBG-PCL composites not only enhanced pre-osteoblast functions but also allowed cell movement along its surface, reaching the upper stratus faster than in pure PCL scaffolds. The cells behavior on each individual stratus revealed that the scaffolds colonization depends on the chemical stimuli supplied by the MBG dissolution…

3D Printing of Porous Alginate/gelatin Hydrogel Scaffolds and Their Mechanical Property Characterization

International Journal of Polymeric Materials and Polymeric Biomaterials 2016 Volume 66, Issue 6, Pages 299-306

Hydrogel scaffolds with well-defined internal structure and interconnected porosity are important for tissue engineering. 3D Bioplotting technique supplemented with thermal/submerged ionic crosslinking process was used to fabricate hydrogel scaffolds. Six scaffold geometries were fabricated and their influence on mechanical performance was investigated. 0/90-0.8 group with the lowest porosity showed the highest Young’s modulus while the Shift group showed the lowest Young’s modulus. Same trend has also been observed for the dynamic modulus of each group. Results demonstrated that the mechanical performance of hydrogel scaffolds can be tuned by changing the internal structure parameters including strands orientation and spacing between strands.

Alginate Gelatin

Periodontal ligament stem/progenitor cells with protein-releasing scaffolds for cementum formation and integration on dentin surface

Connective Tissue Research 2016 Volume 57, Issue 6, Pages 488-495

Purpose/Aim: Cementogenesis is a critical step in periodontal tissue regeneration given the essential role of cementum in anchoring teeth to the alveolar bone. This study is designed to achieve integrated cementum formation on the root surfaces of human teeth using growth factor–releasing scaffolds with periodontal ligament stem/progenitor cells (PDLSCs). Materials and methods: Human PDLSCs were sorted by CD146 expression, and characterized using CFU-F assay and induced multi-lineage differentiation. Polycaprolactone scaffolds were fabricated using 3D printing, embedded with poly(lactic-co-glycolic acids) (PLGA) microspheres encapsulating connective tissue growth factor (CTGF), bone morphogenetic protein-2 (BMP-2), or bone morphogenetic protein-7 (BMP-7). After removing cementum on…

Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration

Biofabrication 2016 Volume 8, Number 2, 025003

Three dimensional (3D) printing has emerged as an efficient tool for tissue engineering and regenerative medicine, given its advantages for constructing custom-designed scaffolds with tunable microstructure/physical properties. Here we developed a micro-precise spatiotemporal delivery system embedded in 3D printed scaffolds. PLGA microspheres (μS) were encapsulated with growth factors (GFs) and then embedded inside PCL microfibers that constitute custom-designed 3D scaffolds. Given the substantial difference in the melting points between PLGA and PCL and their low heat conductivity, μS were able to maintain its original structure while protecting GF’s bioactivities. Micro-precise spatial control of multiple GFs was achieved by interchanging dispensing…

3D-Bioprinting of Polylactic Acid (PLA) Nanofibers-Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 10, Pages 1732–1742

Bioinks play a central role in 3D-bioprinting by providing the supporting environment within which encapsulated cells can endure the stresses encountered during the digitally-driven fabrication process, and continue to mature, proliferate, and eventually form extracellular matrix (ECM). In order to be most effective, it is important that bioprinted constructs recapitulate the native tissue milieu as closely as possible. As such, musculoskeletal soft tissue constructs can benefit from bioinks that mimic their nanofibrous matrix constitution, which is also critical to their function. This study focuses on the development and proof-of-concept assessment of a fibrous bioink composed of alginate hydrogel, polylactic acid…

Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells

Advanced Healthcare Materials 2016 Volume 5, Issue 12, Pages 1429–1438

Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium…

Extrusion-based 3D printing of poly(propylene fumarate) in a full-factorial design

ACS Biomaterials Science & Engineering 2016 Volume 2, Issue 10, Pages 1771–1780

3D printing has emerged as an important technique for fabricating tissue engineered scaffolds. However, systematic evaluations of biomaterials for 3D printing have not been widely investigated. We evaluated poly(propylene fumarate) (PPF) as a model material for extrusion-based printing applications. A full-factorial design evaluating the effects of four factors (PPF concentration, printing pressure, printing speed, and programmed fiber spacing) on viscosity, fiber diameter, and pore size was performed layer-by-layer on 3D scaffolds. We developed a linear model of printing solution viscosity, where concentration of PPF had the greatest effect on viscosity, and the polymer exhibited shear thinning behavior. Additionally, linear models…

3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties

Journal of Materials Science & Technology 2016 Volume 32, Issue 9, Pages 889–900

Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginate hydrogels layer-by-layer. The scaffolds with different crosslinking degree were obtained by post-crosslinking methods. Their physicochemical properties, as well as cell viability, were assessed. Different crosslinking methods had little influence on scaffold architecture, porosity, pore size and distribution. By contrast, the water absorption ability, degradation rate and mechanical properties of the scaffolds were dramatically affected by treatment with various concentrations of…

Multi‐and mixed 3D‐printing of graphene‐hydroxyapatite hybrid materials for complex tissue engineering

Journal of Biomedical Materials Research Part A 2016 Volume 105, Issue 1, Pages 274–283

With the emergence of 3D-printing (3DP) as a vital tool in tissue engineering and medicine, there is an ever growing need to develop new biomaterials that can be 3D-printed and also emulate the compositional, structural, and functional complexities of human tissues and organs. In this work, we probe the 3D-printable biomaterials spectrum by combining two recently established functional 3D-printable particle-laden biomaterial inks: one that contains hydroxyapatite microspheres (Hyperelastic Bone, HB) and another that contains graphene nanoflakes (3D-Graphene, 3DG). We demonstrate that not only can these distinct, osteogenic and neurogenic inks be co-3D-printed to create complex, multi-material constructs, but that composite…

Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering

Tissue Engineering Part C: Methods 2016 Volume 22, Issue 3, Pages 173-188

Three-dimensional (3D) bioprinting of hybrid constructs is a promising biofabrication method for cartilage tissue engineering because a synthetic polymer framework and cell-impregnated hydrogel provide structural and biological features of cartilage, respectively. During bioprinting, impregnated cells may be subjected to high temperatures (caused by the adjacent melted polymer) and process-induced mechanical forces, potentially compromising cell function. This study addresses these biofabrication issues, evaluating the heat distribution of printed polycaprolactone (PCL) strands and the rheological property and structural stability of alginate hydrogels at various temperatures and concentrations. The biocompatibility of parameters from these studies was tested by culturing 3D hybrid constructs bioprinted…