3D Bioplotter Research Papers

Displaying all papers from 2019 (68 results)

Modulation of flexible filaments dynamics due to attachment angle relative to the flow

Experimental Thermal and Fluid Science 2019 Volume 102, Pages 232-244

This paper describes experiments carried out in a wind tunnel with three flexible silicone filaments (length to diameter ratio L/D = 50, 100, 150) hanging in crossflow in the range of reduced velocities of 7 < U* < 150 and at various attachment angles (0 ≤ α ≤ 90°) with respect to the flow direction. At low reduced velocities, due to the negligible bending stiffness, the filaments were statically reconfigured but remained mostly rectilinear along their lengths, except for the relatively small bent portion of the filaments close to the upstream fixed end. As the reduced velocity was further increased the filaments started vibrating, but in…

Cell Bioprinting: The 3D-Bioplotter™ Case

Materials 2019 Volume 12, Issue 23, Article 4005

The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with…

3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering

Bioactive Materials 2019 Volume 4, Pages 256-260

3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP…

Design of a new 3D‐printed joint plug

Asia‐Pacific Journal of Chemical Engineering 2019 Volume 14, Issue 6, Article e2360

This paper introduces a kit of parts as a novel three‐dimensional (3D)–printed joint plug, in which each of the parts function cooperatively to treat cartilage damage in joints of the human body (e.g., hips, wrists, elbow, knee, and ankle). Three required and one optional parts are involved in this plug. The first part is a 3D‐printed hard scaffold (bone portion) to accommodate bone cells, and the second is a 3D‐printed soft scaffold (cartilage portion) overlying the bone portion to accommodate chondrocytes. The third part of joint plug is a permeable membrane, termed film, to cover the entire plug to provide…

3D Bioprinting of the Sustained Drug Release Wound Dressing with Double-Crosslinked Hyaluronic-Acid-Based Hydrogels

Polymers 2019 Volume 11, Issue 10, Article 1584

Hyaluronic acid (HA)-based hydrogels are widely used in biomedical applications due to their excellent biocompatibility. HA can be Ultraviolet (UV)-crosslinked by modification with methacrylic anhydride (HA-MA) and crosslinked by modification with 3,3′-dithiobis(propionylhydrazide) (DTP) (HA-SH) via click reaction. In the study presented in this paper, a 3D-bioprinted, double-crosslinked, hyaluronic-acid-based hydrogel for wound dressing was proposed. The hydrogel was produced by mixing HA-MA and HA-SH at different weight ratios. The rheological test showed that the storage modulus (G’) of the HA-SH/HA-MA hydrogel increased with the increase in the HA-MA content. The hydrogel had a high swelling ratio and a high controlled degradation…

Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties

Acta Biomaterialia 2019 Volume 99, Pages 121-132

The field of 3D bioprinting has rapidly grown, yet the fundamental ability to manipulate material properties has been challenging with current bioink methods. Here, we change bioink properties using our PEG cross-linking (PEGX) bioink method with the objective of optimizing cell viability while retaining control of mechanical properties of the final bioprinted construct. First, we investigate cytocompatible, covalent cross-linking chemistries for bioink synthesis (e.g. Thiol Michael type addition and bioorthogonal inverse electron demand Diels-Alder reaction). We demonstrate these reactions are compatible with the bioink method, which results in high cell viability. The PEGX method is then exploited to optimize extruded…

Fluorescent Carbon‐ and Oxygen‐Doped Hexagonal Boron Nitride Powders as Printing Ink for Anticounterfeit Applications

Advanced Optical Materials 2019 Volume 7, Issue 24, Article 1901380

Increasing demands for optical anticounterfeiting technology require the development of versatile luminescent materials with tunable photoluminescence properties. Herein, a number of fluorescent carbon‐ and oxygen‐doped hexagonal boron nitride (denoted as BCNO) phosphors are found to offer a such high‐tech anticounterfeiting solution. These multicolor BCNO powders, developed in a two‐step process with controlled annealing and oxidation, feature rod‐like particle shape, with varied luminescence properties. Studies of the optical properties of BCNO, along with other characterization, provide insight into this underexplored material. Anticounterfeiting applications are demonstrated with printed patterns which are indistinguishable to the naked eye under visible light but become highly…

3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors

Biomedical Materials 2019 Volume 14, Article 065011

Scaffolds with controlled drug release are valuable for bone tissue engineering, but constructing the scaffolds with controllable dual-drug release behaviors is still a challenge. In this study, layered mesoporous bioactive glass/sodium alginate-sodium alginate (MBG/SA–SA) scaffolds with controllable dual-drug release behaviors were fabricated by 3D printing. The porosity and compressive strength of three-dimensional (3D) printed MBG/SA–SA scaffolds by cross-linking are about 78% and 4.2 MPa, respectively. As two model drugs, bovine serum albumin (BSA) and ibuprofen (IBU) were separately loaded in SA layer and MBG/SA layer, resulting in a relatively fast release of BSA and a sustained release of IBU. Furthermore,…

An oxygen-releasing device to improve the survival of mesenchymal stem cells in tissue engineering

Biofabrication 2019 Volume 11, Number 4, Article 045012

Supplying oxygen to inner areas of cell constructs to support cell proliferation and metabolism is a major challenge in tissue engineering involving stem cells. Developing devices that incorporate oxygen release materials to increase the availability of the localized oxygen supply is therefore key to addressing this limitation. Herein, we designed and developed a 3D-printed oxygen-releasing device composed of an alginate hydrogel scaffold combined with an oxygen-generating biomaterial (calcium peroxide) to improve the oxygen supply of the microenvironment for culturing adipose tissue-derived stem cells. The results demonstrated that the 3D-printed oxygen-releasing device alleviated hypoxia, maintained oxygen availability, and ensured proliferation of…

Additive manufacturing and tissue engineering to improve outcomes in breast reconstructive surgery

Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT) 2019 Pages 38 - 42

Many women with early breast cancer undergo mastectomy as a consequence of an unfavorable tumor/breast ratio or because they prefer this option to breast conservation. As reported, breast reconstruction offers significant psychological advantages. Several techniques are currently available for the breast oncoplastic surgeon and offer interesting results in terms of aesthetic and patient-reported outcomes, using both breast implants and autologous tissues. On the other hand, advanced methodologies and technologies, such as reverse engineering and additive manufacturing, allow the development of customized porous scaffolds with tailored architectures, biological, mechanical and mass transport properties. Accordingly, the current research dealt with challenges, design…

3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance

Biomaterials 2019 Volume 222, Article 119423

Vascularization is a crucial process during the growth and development of bone 1, yet it remains one of the main challenges in the reconstruction of large bone defects. The use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. Both cell types secrete specific growth factors that are mutually beneficial, and studies suggested that cell-cell communication and paracrine secretion could be affected by a number of factors. However, little is known about the effect of cell patterning and the distance between cell populations on…

In vivo remodeling of a 3D-Bioprinted tissue engineered heart valve scaffold

Bioprinting 2019 Volume 16, Article e00059

Objective To evaluate the recellularization potential of a bioprinted aortic heart valve scaffold printed with highly concentrated Type I collagen hydrogel (Lifeink® 200) and MSCs. Materials and methods A suspension of rat mesenchymal stem cells (MSCs) was mixed with Lifeink® 200 and was 3D-printed into gelatin support gel to produce disk scaffolds which were subsequently implanted subcutaneously in Sprague-Dawley rats for 2, 4, 8, and 12 weeks. The biomechanical properties of the scaffolds were evaluated by uniaxial tensile testing and cell infiltration and inflammation assessed via immunohistochemistry (IHC) and histological staining. Results There was an average decrease in both UTS…

Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions

Journal of Materials Chemistry B 2019 Volume 7, Issue 29, Pages 4538-4551

3D bioprinting techniques have been attracting attention for tissue scaffold fabrication in nerve tissue engineering applications. However, due to the inherent complexity of nerve tissues, bioprinting scaffolds that can appropriately promote the regeneration of damaged tissues is still challenging. This paper presents our study on bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions including RGD modified alginate, hyaluronic acid and fibrin, with a focus on investigating the printability of hydrogel compositions and characterizing the functions of printed scaffolds for potential use in nerve tissue regeneration. We assessed the rheological properties of hydrogel precursors via temperature, time and shear rate sweeps,…

Effect of Polymer Binder on the Synthesis and Properties of 3D-Printable Particle-Based Liquid Materials and Resulting Structures

ACS Omega 2019 Volume 4, Issue 7, Pages 12088-12097

Recent advances have demonstrated the ability to 3D-print, via extrusion, solvent-based liquid materials (previously named 3D-Paints) which solidify nearly instantaneously upon deposition and contain a majority by volume of solid particulate material. In prior work, the dissolved polymer binder which enables this process is a high molecular weight biocompatible elastomer, poly(lactic-co-glycolic) acid (PLGA). We demonstrate in this study an expansion of this solvent-based 3D-Paint system to two additional, less-expensive, and less-specialized polymers, polystyrene (PS) and polyethylene oxide (PEO). The polymer binder used within the 3D-Paint was shown to significantly affect the as-printed and thermal postprocessing behavior of printed structures. This…

The application of BMP-12-overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair

International Journal of Biological Macromolecules 2019 Volume 138, Pages 79-88

This study investigates if the application of bone marrow-derived mesenchymal stem cells (BM-MSCs) loaded 3D-printed scaffolds could improve rotator cuff repair. The polylactic-co-glycolic acid (PLGA) scaffolds were fabricated by 3D print technology. Rabbit BM-MSCs were transfected with a recombinant adenovirus encoding bone morphogenic protein 12 (BMP-12). The effect of BM-MSCs loaded PLGA scaffolds on tendon-bone healing was assessed by biomechanical testing and histological analysis in a rabbit rotator cuff repair model. We found that the PLGA scaffolds had good biocompatible and biodegradable property. Overexpression of BMP-12 increased the mRNA and protein expression of tenogenic genes in BM-MSCs cultured with DMEM…

Fabrication of a conductive composite structure with enhanced stretchability using direct-write 3D printing

Materials Research Express 2019 Volume 6, Number 8, Article 085319

High stretchability and mechanical stability are the key properties of a conductive polymer composite structure. In this work, an anisotropic composite is fabricated by wet 3D printing of epoxy crosslinked chitosan/carbon microtubes. The carbon microtubes were synthesized through a high temperature carbonization of chemically purified cellulose fibres. After the chemical treatment and high temperature carbonization, the removal amorphous substrates from the core of cotton fibres results in the formation of a tubular structure. Here, chitosan which is an abundant natural polymer was used as the composite matrix. It was found that the epoxy crosslinking increases the stretchability of composite filaments.

Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation

Journal of Materials Science: Materials in Medicine 2019 Volume 30, Article 63

The menisci have crucial roles in the knee, chondroprotection being the primary. Meniscus repair or substitution is favored in the clinical management of the meniscus lesions with given indications. The outstanding challenges with the meniscal scaffolds include the required biomechanical behavior and features. Suturability is one of the prerequisites for both implantation and implant survival. Therefore, we proposed herein a novel highly interconnected suturable porous scaffolds from regenerated silk fibroin that is reinforced with 3D-printed polycaprolactone (PCL) mesh in the middle, on the transverse plane to enhance the suture-holding capacity. Results showed that the reinforcement of the silk fibroin scaffolds…

System identification and robust tracking of a 3D printed soft actuator

Smart Materials and Structures 2019 Volume 28, Article 075025

Current three-dimensional (3D) printing allows for the fabrication of controllable 3D printed soft actuators with growing applications in soft robotics, like cell manipulation and drug delivery. Therefore, a precise and computationally efficient control algorithm for robust trajectory tracking of the 3D printed soft actuators has become important. The results of the primary model of the soft actuator deviated from experimental results due to uncertainties such as time-varying characteristics of the actuator. Hence, a second-order type nonsingular terminal sliding mode controller (NTSMC) for robust stabilization and trajectory tracking of the 3D printed actuator is proposed. It is shown via experiments that…

Silk particles, microfibres and nanofibres: A comparative study of their functions in 3D printing hydrogel scaffolds

Materials Science and Engineering: C 2019 Volume 103, Article 109784

Silk, with highly crystalline structure and well-documented biocompatibility, is promising to be used as reinforcing material and build functionalized composite scaffolds. In the present study, we developed chitosan/silk composite scaffolds using silk particles, silk microfibres and nanofibres via 3D printing method. The three forms of silk fillers with varied shapes and dimensions were obtained via different processing methods and evaluated of their morphology, crystalline structure and thermal property. All silk fillers showed different degrees of improvement on printability in terms of ink rheology and printing shape fidelity. Different silk fillers led to different scaffold surface morphology and different roughness, while…

An investigation into the relationship between inhomogeneity and wave shapes in phantoms and ex vivo skeletal muscle using Magnetic Resonance Elastography and finite element analysis

Journal of the Mechanical Behavior of Biomedical Materials 2019 Volume 98, Pages 108-120

Soft biological tissues such as skeletal muscle and brain white matter can be inhomogeneous and anisotropic due to the presence of fibers. Unlike biological tissue, phantoms with known microstructure and defined mechanical properties enable a quantitative assessment and systematic investigation of the influence of inhomogeneities on the nature of shear wave propagation. This study introduces a mathematical measure for the wave shape, which the authors call as the 1-Norm, to determine the conditions under which homogenization may be a valid approach. This is achieved through experimentation using the Magnetic Resonance Elastography technique on 3D printed inhomogeneous fiber phantoms as well…

Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores

Carbohydrate Polymers 2019 Volume 221, Pages 146-156

One of the latest trends in the regenerative medicine is the development of 3D-printing hydrogel scaffolds with biomimetic structures for tissue regeneration and organ reconstruction. However, it has been practically difficult to achieve a highly biomimetic hydrogel scaffolds with proper mechanical properties matching the natural tissue. Here, bacterial cellulose nanofibers (BCNFs) were applied to improve the structural resolution and enhance mechanical properties of silk fibroin (SF)/gelatin composite hydrogel scaffolds. The SF-based hydrogel scaffolds with hierarchical pores were fabricated via 3D-printing followed by lyophilization. Results showed that the tensile strength of printed sample increased significantly with the addition of BCNFs in…

3D Printing of Tissue Engineering Scaffolds with Horizontal Pore and Composition Gradients

Tissue Engineering Part C: Methods 2019 Volume 25, Issue 7, Pages 411-420

This work investigated a new 3D-printing methodology to prepare porous scaffolds containing horizontal pore and composition gradients. To achieve that, a multimaterial printing technology developed in our laboratory was adapted to incorporate pore gradients. Fibers were printed by welding segments with unique material compositions and fiber diameters. Particularly, we focused on the preparation of model composite poly(ε-caprolactone)-based scaffolds with radial gradients of particulate hydroxyapatite (HA) content (higher concentrations in the outer region of the scaffold) and porosity (higher in the inner region). The morphology of the scaffolds revealed that the methodology allowed the fabrication of discrete regions with compressive mechanical…

Carbon Nanodots Doped Super-paramagnetic Iron Oxide Nanoparticles for Multimodal Bioimaging and Osteochondral Tissue Regeneration via External Magnetic Actuation

ACS Biomaterials Science & Engineering 2019 Volume 5, Issue 7, Pages 3549-3560

Super-paramagnetic iron oxide nanoparticles (SPIONs) have multiple theranostics applications such as T2 contrast agent in magnetic resonance imaging (MRI) and electromagnetic manipulations in biomedical devices, sensors, and regenerative medicines. However, SPIONs suffer from the limitation of free radical generation, and this has a certain limitation in its applicability in tissue imaging and regeneration applications. In the current study, we developed a simple hydrothermal method to prepare carbon quantum dots (CD) doped SPIONs (FeCD) from easily available precursors. The nanoparticles are observed to be cytocompatible, hemocompatible, and capable of scavenging free radicals in vitro. They also have been observed to be…

3D printing of free-standing and flexible nitrogen doped graphene/ polyaniline electrode for electrochemical energy storage

Chemical Physics Letters 2019 Volume 728, August 2019, Pages 6-13

Flexible graphene film can be quickly realized by three-dimensional printing (3D printing), which has the potential in functional electronic devices. With a trace of cobalt ions as crosslinker, the graphene oxide sol can be converted into 3D printed ink, overcoming the disadvantage of insufficient viscosity of pure graphene oxide ink. The various graphene architectures were successfully obtained by 3D printing, moreover, graphene/polyaniline composites were obtained by electropolymerization. The specific capacitance of graphene/polyaniline electrode achieved up to 238 F/g at the current density of 0.5 A/g, which was much higher than that of graphene electrode (35 F/g).

Effects of 3-dimensional Bioprinting Alginate/ Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells

Journal of Endodontics 2019 Volume 45, Issue 6, Pages 706-715

Abrasive flow machining (AFM) is a nontraditional surface finishing method that finishes complex surface by pushing the abrasive media flow through the workpiece surface. The entrance effect that the material removal increases at the entrance of changing the cross-sectional flow channel is a difficult problem for AFM. In this paper, the effects of media rheological properties on the entrance effect are discussed. To explore the effects of the media’s viscoelasticity on the entrance effect, two sets of media with different viscoelasticity properties are adopted to study their rheological and machining performances in the designed flow channel with a contraction area.…

Printability and Cell Viability in Bioprinting Alginate Dialdehyde- Gelatin Scaffolds

ACS Biomaterials Science & Engineering 2019 Volume 5, Issue 6, Pages 2976-2987

Three-dimensional (3D) bioprinting is a promising technique used to fabricate scaffolds from hydrogels with living cells. However, the printability of hydrogels in bioprinting has not been adequately studied. The aim of this study was to quantitatively characterize the printability and cell viability of alginate dialdehyde (ADA)-gelatin (Gel) hydrogels for bioprinting. ADA-Gel hydrogels of various concentrations were synthesized and characterized using Fourier transform infrared spectroscopy, along with rheological tests for measuring storage and loss moduli. Scaffolds (with an area of 11 × 11 mm) of 1, 2, and 13 layers were fabricated from ADA-Gel hydrogels using a 3D-bioplotter under printing conditions…

Quantitative ultrasound imaging of cell-laden hydrogels and printed constructs

Acta Biomaterialia 2019 Volume 91, Pages 173-185

In the present work we have revisited the application of quantitative ultrasound imaging (QUI) to cellular hydrogels, by using the reference phantom method (RPM) in combination with a local attenuation compensation algorithm. The investigated biological samples consisted of cell-laden collagen hydrogels with PC12 neural cells. These cell-laden hydrogels were used to calibrate the integrated backscattering coefficient (IBC) as a function of cell density, which was then used to generate parametric images of local cell density. The image resolution used for QUI and its impact on the relative IBC error was also investigated. Another important contribution of our work was the…

Achieving Molecular Orientation in Thermally Extruded 3D Printed Objects

Biofabrication 2019 Volue 11, Number 4, Article 045004

3D printing is used to fabricate tissue scaffolds. The polymer chains in these objects are typically unoriented. The mechanical properties of these scaffolds can be significantly enhanced by proper alignment of the polymer chains. But, post-processing routes to increase orientation can be limited by the geometry of the printed object. Here we show that it is possible to orient the polymer chains during printing by optimizing the printing parameters to take advantage of the flow characteristics of the polymer. This is demonstrated by printing a polymeric scaffold for meniscus regeneration using poly(desaminotyrosyl-tyrosine dodecyl dodecanedioate), poly(DTD DD). Alignment of the polymer…

3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering

Materials Science & Engineering C 2019 Volume 103, Article 109731

The fabrication of bone tissue engineering scaffolds with high osteogenic ability and favorable mechanical properties is of huge interest. In this study, a silk fibroin (SF) solution of 30 wt% was extracted from cocoons and combined with mesoporous bioactive glass (MBG) to fabricate MBG/SF composite scaffolds by 3D printing. The porosity, compressive strength, degradation and apatite forming ability were evaluated. The results illustrated that MBG/SF scaffolds had superior compressive strength (ca. 20 MPa) and good biocompatibility, and stimulated bone formation ability compared to mesoporous bioactive glass/polycaprolactone (MBG/PCL) scaffolds. We subcutaneously transplanted hBMSCs-loaded MBG/SF and MBG/PCL scaffolds into the back of nude mice…

3D printed, controlled release, tritherapeutic tablet matrix for advanced anti-HIV-1 drug delivery

European Journal of Pharmaceutics and Biopharmaceutics 2019 Volume 138, Pages 99-110

Purpose A 3D-Bioplotter® was employed to 3D print (3DP) a humic acid-polyquaternium 10 (HA-PQ10) controlled release fixed dose combination (FDC) tablet comprising of the anti-HIV-1 drugs, efavirenz (EFV), tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC). Methods Chemical interactions, surface morphology and mechanical strength of the FDC were ascertained. In vitro drug release studies were conducted in biorelevant media followed by in vivo study in the large white pigs, in comparison with a market formulation, Atripla®. In vitro-in vivo correlation of results was undertaken. Results EFV, TDF and FTC were successfully entrapped in the 24-layered rectangular prism-shaped 3DP FDC with a…

Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc

Materials Today Communications 2019 Volume 19, Pages 506-512

Lower back pain (LBP), which is strongly associated with intervertebral disc (IVD) degeneration, is one of the most frequently reported age- and work-related disorder in actual society, leading to a huge socio-economic impact worldwide. The current treatments have poor clinical outcomes and do not consider each patient needs. Thus, there is a growing interest in the potential of personalized cell-based tissue engineering (TE) approaches aimed to regenerate the damaged IVD and efficiently restore full disc function. In this work, a bioink composed by silk fibroin (SF) hydrogel combined with elastin was used to bioprint patient-specific substitutes mimicking IVD ultrastructure, in…

3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices

Nature Communications 2019 Volume 10, Article number: 904

Additive manufacturing of high-entropy alloys combines the mechanical properties of this novel family of alloys with the geometrical freedom and complexity required by modern designs. Here, a non-beam approach to additive manufacturing of high-entropy alloys is developed based on 3D extrusion of inks containing a blend of oxide nanopowders (Co3O4 + Cr2O3 + Fe2O3 + NiO), followed by co-reduction to metals, inter-diffusion and sintering to near-full density CoCrFeNi in H2. A complex phase evolution path is observed by in-situ X-ray diffraction in extruded filaments when the oxide phases undergo reduction and the resulting metals inter-diffuse, ultimately forming face-centered-cubic equiatomic CoCrFeNi alloy. Linked to the phase evolution…

Wet 3‐D printing of epoxy cross‐linked chitosan/carbon microtube composite

Polymers for Advanced Technologies 2019 Volume 30, Issue 7, Pages 1732-1737

Over the last decays, the use of conductive biopolymer composites has been growing in areas such as biosensors, soft robotics, and wound dressing applications. They are generally soft hydrophilic materials with good elastic recovery and compatible with biological environments. However, their application and removal from the host are still challenging mainly due to poor mechanical strength. This work displays a technique for the fabrication of complex‐shaped conductive structures with improved mechanical strength by wet three‐dimensional (3‐D) printing, which uses a coagulation bath to quickly solidify an epoxy cross‐linked chitosan/carbon microtube composite ink. The fabricated conductive structure demonstrated higher elongation strength…

Implantable Nanotube Sensor Platform for Rapid Analyte Detection

Macromolecular Bioscience 2019 Volume 19, Issue 6, Article 1800469

The use of nanoparticles within living systems is a growing field, but the long‐term effects of introducing nanoparticles to a biological system are unknown. If nanoparticles remain localized after in vivo implantation unanticipated side effects due to unknown biodistribution can be avoided. Unfortunately, stabilization and retention of nanoparticles frequently alters their function.1 In this work multiple hydrogel platforms are developed to look at long‐term localization of nanoparticle sensors with the goal of developing a sensor platform that will stabilize and localize the nanoparticles without altering their function. Two different hydrogel platforms are presented, one with a liquid core of sensors…

3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation

Biochemical and Biophysical Research Communications 2019 Volume 512, Issue 4, Pages 889-895

Traditional treatments for bone repair with allografts and autografts are limited by the source of bone substitutes. Bone tissue engineering via a cell-based bone tissue scaffold is a new strategy for treatment against large bone defects with many advantages, such as the accessibility of biomaterials, good biocompatibility and osteoconductivity; however, the inflammatory immune response is still an issue that impacts osteogenesis. Sphingosine 1-phosphate (S1P) is a cell-derived sphingolipid that can mediate cell proliferation, immunoregulation and bone regeneration. We hypothesised that coating S1P on a β-Tricalcium phosphate (β-TCP) scaffold could regulate the immune response and increase osteogenesis. We tested the immunoregulation…

Novel Strategy to Accelerate Bone Regeneration of Calcium Phosphate Cement by Incorporating 3D Plotted Poly(lactic‐co‐glycolic acid) Network and Bioactive Wollastonite

Advanced Healthcare Materials 2019 Volume 8, Issue 9, Article 1801325

Inefficient bone regeneration of self‐hardening calcium phosphate cement (CPC) increases the demand for interconnected macropores and osteogenesis‐stimulated substances. It remains a challenge to fabricate porous CPC with interconnected macropores while maintaining its advantages, such as plasticity. Herein, pastes containing CPC and wollastonite (WS) are infiltrated into a 3D plotted poly(lactic‐co‐glycolic acid) (PLGA) network to fabricate plastic CPC‐based composite cement (PLGA/WS/CPC). The PLGA/WS/CPC recovers the plasticity of CPC after being heated above the glass transition temperature of PLGA. The presence of the 3D PLGA network significantly increases the flexibility of CPC in prophase and generates 3D interconnected macropores in situ upon…

3D-printed ternary SiO2CaOP2O5 bioglass-ceramic scaffolds with tunable compositions and properties for bone regeneration

Ceramics International 2019 Volume 45, Issue 8, Pages 10997-11005

Simple ternary SiO2CaOP2O5 bioglasses proved sufficient osteogenesis capacity. In this study, the bioglasses were 3D printed into porous scaffolds and SiO2/CaO molar ratio was altered (from 90/5 to 60/35) to achieve tunable glass-ceramic compositions after thermal treatment. Scaffolds possessed interconnected porous structure with controllable porosities via 3D printing technique. In addition, microstructure and properties of mechanical strength, degradation, ion dissolution and apatite formation were investigated. Characterization results showed that higher content of SiO2 produced more homogeneous crystalline particles and sintering compactness, thus led to higher strength. For scaffolds with higher CaO content, more glasses were maintained and faster degradation rate…

Development of surface functionalization strategies for 3D‐printed polystyrene constructs

Journal of Biomedical Material Research, Part B: Applied Biomaterials 2019 Volume 107, Issue 8, Pages 2566-2578

There is a growing interest in 3D printing to fabricate culture substrates; however, the surface properties of the scaffold remain pertinent to elicit targeted and expected cell responses. Traditional 2D polystyrene (PS) culture systems typically require surface functionalization (oxidation) to facilitate and encourage cell adhesion. Determining the surface properties which enhance protein adhesion from media and cellular extracellular matrix (ECM) production remains the first step to translating 2D PS systems to a 3D culture surface. Here we show that the presence of carbonyl groups to PS surfaces correlated well with successful adhesion of ECM proteins and sustaining ECM production of…

Osteostatin potentiates the bioactivity of mesoporous glass scaffolds containing Zn2+ ions in human mesenchymal stem cells

Acta Biomaterialia 2019 Volume 89, Pages 359-371

There is an urgent need of biosynthetic bone grafts with enhanced osteogenic capacity. In this study, we describe the design of hierarchical meso-macroporous 3D-scaffolds based on mesoporous bioactive glasses (MBGs), enriched with the peptide osteostatin and Zn2+ ions, and their osteogenic effect on human mesenchymal stem cells (hMSCs) as a preclinical strategy in bone regeneration. The MBG compositions investigated were 80%SiO2–15%CaO–5%P2O5 (in mol-%) Blank (BL), and two analogous glasses containing 4% ZnO (4ZN) and 5% ZnO (5ZN). By using additive fabrication techniques, scaffolds exhibiting hierarchical porosity: mesopores (around 4 nm), macropores (1–600 μm) and big channels (∼1000 μm), were prepared. These MBG scaffolds…

3D Bioprinted Scaffolds Containing Viable Macrophages and Antibiotics Promote Clearance of Staphylococcus aureus Craniotomy-Associated Biofilm Infection

ACS Apllied Materials & Interfaces 2019 Volume 11, Issue 13, Pages 12298-12307

Craniotomy involves the removal of a skull fragment to access the brain, such as during tumor or epilepsy surgery, which is immediately replaced intraoperatively. The infection incidence after craniotomy ranges from 0.8 to 3%, with approximately half caused by Staphylococcus aureus (S. aureus). To mitigate infectious complications following craniotomy, we engineered a three-dimensional (3D) bioprinted bone scaffold to harness the potent antibacterial activity of macrophages (MΦs) together with antibiotics using a mouse S. aureus craniotomy-associated biofilm model that establishes a persistent infection on the bone flap, subcutaneous galea, and brain. The 3D scaffold contained rifampin and daptomycin printed in a…

Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering

Acta Biomaterialia 2019 Volume 90, Pages 37-48

Recent developments in 3D printing (3DP) research have led to a variety of scaffold designs and techniques for osteochondral tissue engineering; however, the simultaneous incorporation of multiple types of gradients within the same construct remains a challenge. Herein, we describe the fabrication and mechanical characterization of porous poly(ε-caprolactone) (PCL) and PCL-hydroxyapatite (HA) scaffolds with incorporated vertical porosity and ceramic content gradients via a multimaterial extrusion 3DP system. Scaffolds of 0 wt% HA (PCL), 15 wt% HA (HA15), or 30 wt% HA (HA30) were fabricated with uniform composition and porosity (using 0.2 mm, 0.5 mm, or 0.9 mm on-center fiber spacing), uniform composition and gradient porosity, and…

3D printing of poly(vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators

MRS Communications 2019 Volume 9, Issue 1, Pages 159-164

Flexible piezoelectric generators (PEGs) present a unique opportunity for renewable and sustainable energy harvesting. Here, we present a low-temperature and low-energy deposition method using solvent evaporation-assisted three-dimensional printing to deposit electroactive poly(vinylidene fluoride) (PVDF)-trifluoroethylene (TrFE) up to 19 structured layers. Visible-wavelength transmittance was above 92%, while ATR-FTIR spectroscopy showed little change in the electroactive phase fraction between layer depositions. Electroactivity from the fabricated PVDF-TrFE PEGs showed that a single structured layer gave the greatest output at 289.3 mV peak-to-peak voltage. This was proposed to be due to shear-induced polarization affording the alignment of the fluoropolymer dipoles without an electric field…

Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications

Journal of the Mechanical Behavior of Biomedical Materials 2019 Volume 93, Pages 183-193

Low-concentration hydrogels have favorable properties for many cell functions in tissue engineering but are considerably limited from a scaffold fabrication point of view due to poor three-dimensional (3D) printability. Here, we developed an indirect-bioprinting process for alginate scaffolds and characterized the potential of these scaffolds for nerve tissue engineering applications. The indirect-bioprinting process involves (1) printing a sacrificial framework from gelatin, (2) impregnating the framework with low-concentration alginate, and (3) removing the gelatin framework by an incubation process, thus forming low-concentration alginate scaffolds. The scaffolds were characterized by compression testing, swelling, degradation, and morphological and biological assessment of incorporated or…

A method to deliver patterned electrical impulses to Schwann cells cultured on an artificial axon

Neural Regeneration Research 2019 Volume 14, Issue 6, Pages 1052-1059

Information from the brain travels back and forth along peripheral nerves in the form of electrical impulses generated by neurons and these impulses have repetitive patterns. Schwann cells in peripheral nerves receive molecular signals from axons to coordinate the process of myelination. There is evidence, however, that non-molecular signals play an important role in myelination in the form of patterned electrical impulses generated by neuronal activity. The role of patterned electrical impulses has been investigated in the literature using co-cultures of neurons and myelinating cells. The co-culturing method, however, prevents the uncoupling of the direct effect of patterned electrical impulses…

Hydroxyapatite /Collagen 3D printed Scaffolds and their Osteogenic Effects on hBMSCs

Tissue Engineering Part A 2019 Volume: 25 Issue 17-18, Pages 1261-1271

3D printing provides a novel approach to repair bone defects using customized biomimetic tissue scaffolds. To make a bone substitute closest to natural bone structure and composition, two different types of hydroxyapatite, Nano hydroxyapatite (nHA) and deproteinized bovine bone (DBB), were dispersed into collagen (CoL) to prepare the bio-ink for 3D printing. In doing so, a porous architecture was manufactured with 3D printing technology. The physical and chemical properties of the materials were evaluated, including biocompatibility and effect on the osteogenic differentiation of the human bone marrow-derived mesenchyme stem cells (hBMSCs). The XPS, XRD, FTIR, and the mechanical analysis of…

Nanogrooved carbon microtubes for wet 3D printing of conductive composite structures

Polymer International 2019 Volume 68, Issue 5, Pages 922-928

Recent advances in 3D printing have enabled the fabrication of interesting structures which were not achievable using traditional fabrication approaches. 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions…

Bending Control of a 3D Printed Polyelectrolyte Soft Actuator with Uncertain Model

Sensors and Actuators A: Physical 2019 Volume 288, Pages 134-143

Introduction of 3-dimensional (3D) printing in fabrication and increasing applications of intriguing products in soft robotics have led to studies on controllable 3D printed soft actuators. Therefore, a demand for a precise and computationally efficient model for bending control of the 3D printed soft actuators has arisen. This study initially used a grey box strategy for dynamic modeling of a 3D printed soft actuator which undergoes large bending deformations. Yet, the primary model estimated results deviated from experimental results due to uncertainties such as hysteresis and time varying characteristics of the soft actuator in presence of electric field. Thus, a…

Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments

Bioprinting 2019 Volume 14, Article e00045

Peripheral nerve tissue requires appropriate biochemical and physical cues to guide the regeneration process after injury. Bioprinted peptide-conjugated sodium alginate (PCSA) scaffolds have the potential to provide physical and biochemical cues simultaneously. Such scaffolds need characterisation in terms of printability, mechanical stability, and biological performance to refine and improve application in nerve tissue regeneration. In this study, it was hypothesized that 3D scaffold printed with low concentrated multiple PCSA precursor would be supportive for axon outgrowth. Therefore, a 2% (w/v) alginate precursor was conjugated with either arginine-glycine-aspartate (RGD) or tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptides, or a mixture of RGD and YIGSR (1:2)…

Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications

Materials Science and Engineering: C 2019 Volume 96, Pages 105-113

Porous scaffolds were 3D-printed using poly lactic-co-glycolic acid (PLGA)/TiO2 composite (10:1 weight ratio) for bone tissue engineering applications. Addition of TiO2 nanoparticles improved the compressive modulus of scaffolds. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed an increase in both glass transition temperature and thermal decomposition onset of the composite compared to pure PLGA. Furthermore, addition of TiO2 was found to enhance the wettability of the surface evidenced by reducing the contact angle from 90.5 ± 3.2 to 79.8 ± 2.4 which is in favor of cellular attachment and activity. The obtained results revealed that PLGA/TiO2 scaffolds significantly improved osteoblast proliferation compared to…

3D Printing of Elastomeric Biomaterials

International Symposium on 3D Printing in Medicine 2019 OP-24

A key challenge towards engineering 3D printed soft tissues is the availability of proper scaffolding materials with enough load carrying capacity. In this study, we synthesized biocompatible and biodegradable, elastomeric polyurethaneureas (TPUU) and investigated the applicability of these novel materials as 3D printed load carrying constructs.

Polyurethaneurea

Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography

Journal of the Mechanical Behavior of Biomedical Materials 2019 Volume 89, Pages 199-208

The presence and progression of neuromuscular pathology, including spasticity, Duchenne’s muscular dystrophy and hyperthyroidism, has been correlated with changes in the intrinsic mechanical properties of skeletal muscle tissue. Tools for noninvasively measuring and monitoring these properties, such as Magnetic Resonance Elastography (MRE), could benefit basic research into understanding neuromuscular pathologies, as well as translational research to develop therapies, by providing a means of assessing and tracking their efficacy. Dynamic elastography methods for noninvasive measurement of tissue mechanical properties have been under development for nearly three decades. Much of the technological development to date, for both Ultrasound (US)-based and Magnetic Resonance…

Gelatin Imaging

3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration

Applied Surface Science 2019 Volumes 467–468, Pages 345-353

In an attempt to fabricate biomimetic bone repair scaffolds and improve bone regeneration point of view, we have three dimensionally printed porous scaffolds with biomineralized hydroxyapatite/silk fibroin nanocomposites. SF/HA composite particles were firstly produced via an in-situ mineral precipitation process when SF molecules were served as templates.. Microscopy observations of SF/HA showed homogeneous morphology and narrowly distributed size. By using sodium alginate (SA) as paste binder, scaffolds with different contents of SF/HA were subsequently 3D-printed under proper conditions. All the scaffolds were porous with 3D interconnected large pores (size ~400 μm) and an overall porosity about 70%, combined with a relative…

3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks

Materials Horizons 2019 Volume 6, Pages 733-742

Natural polymer hydrogels are one of the best biomaterials for soft tissue repair because of their excellent biocompatibility, biodegradability and low immune rejection. However, they lack mechanical strength matching that of natural tissue and desired functionality (e.g., self-healing and 3D-printability). To solve these problems, we developed a host–guest supramolecule (HGSM) with three arms covalently crosslinked with a natural polymer to construct a novel hydrogel with non-covalent bonds integrated into a covalently crosslinked network. This unique structure enabled the hydrogel to exhibit improved mechanical properties and show both self-healing and 3D printing capabilities. The three-armed HGSM was first prepared via efficient…

Extrudability analysis of drug loaded pastes for 3D printing of modified release tablets

International Journal of Pharmaceutics 2019 Volume 554, Pages 292-301

The rheological characteristics of pastes for 3D printing of tablets may not be described fully by the traditional rheological tests generally used for other pastes. In the present study, extrudability testing of carbopol based 3D printing pastes was performed to establish a constitutive rheological model for micro-extrusion. This model was developed for pastes that exhibit a non-linear plasto-viscoelastic behavior and follow the generalized Herschel–Bulkley flow rule. An analytical model was applied to extrudability data obtained by micro-extrusion through nozzles of 0.4 and 0.6 mm diameters. For this purpose, nineteen pastes were prepared per a fractional factorial design using various concentrations of…

Rigid elements dynamics modeling of a 3D printed soft actuator

Smart Materials and Structures 2019 Volume 28, Issue 2, Article 025003

Due to the growing interest in three-dimensional (3D) printed soft actuators, the establishment of an appropriate mathematical model that could effectively predict the actuators’ dynamic behavior has become necessary. This study presents the development of an effective modeling strategy for the dynamic analysis of a 3D printed polyelectrolyte actuator undergoing large bending deformations. The proposed model is composed of two parts, namely electrical and mechanical dynamic models. The electrical model describes the actuator as a gray box model, whereas the mechanical model relates the stored charges to the bending displacement through considering the printed actuator as a discretized system connected…

Development of mechanistic models to identify critical formulation and process variables of pastes for 3D printing of modified release tablets

International Journal of Pharmaceutics 2019 Volume 555, Pages 109-123

The future of pharmaceutical manufacturing may be significantly transformed by 3-dimensional (3D) printing. As an emerging technology, the indicators of quality for materials and processes used in 3D printing have not been fully established. The objective of this study was to identify the critical material attributes of semisolid paste formulations filled into cartridges for 3D printing of personalized medicine. Nineteen semisolid formulations were prepared per a fractional factorial design with three replicates of the center point. The variables investigated included percent loading of API and various soluble and insoluble excipients. Pastes were characterized for viscoelastic characteristics during the 3D printing…

I-Optimal Design of Hierarchical 3D Scaffolds Produced by Combining Additive Manufacturing and Thermally Induced Phase Separation

ACS Apllied Bio Materials 2019 Volume 2, Issue 2, Pages 685-696

The limitations in the transport of oxygen, nutrients, and metabolic waste products pose a challenge to the development of bioengineered bone of clinically relevant size. This paper reports the design and characterization of hierarchical macro/microporous scaffolds made of poly(lactic-co-glycolic) acid and nanohydroxyapatite (PLGA/nHA). These scaffolds were produced by combining additive manufacturing (AM) and thermally induced phase separation (TIPS) techniques. Macrochannels with diameters of ∼300 μm, ∼380 μm, and ∼460 μm were generated by embedding porous 3D-plotted polyethylene glycol (PEG) inside PLGA/nHA/1,4-dioxane or PLGA/1,4-dioxane solutions, followed by PEG extraction using deionized (DI) water. We have used an I-optimal design of experiments…

Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting

Biofabrication 2019 Volume 11, Issue 1, Article 015015

Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we test the hypothesis that hydroxyapatite (HAP) stimulates chondrocytes to secrete the characteristic matrix of calcified cartilage. Sodium citrate (SC) was added as a dispersant of HAP within alginate (ALG), and homogeneous dispersal of HAP within ALG hydrogel was confirmed using sedimentation tests, electron microscopy, and energy dispersive spectroscopy. To examine the biological performance of ALG/HAP composites, chondrocyte survival…

Microstructure and porosity evolution during sintering of Ni-Mn-Ga wires printed from inks containing elemental powders

Intermetallics 2019 Volume 104, Pages 113-123

Ni-29Mn-21.5Ga (at. %) wires are fabricated via a combination of (i) extrusion of liquid inks containing a binder, solvents, and elemental Ni, Mn, and Ga powders and (ii) heat treatments to remove the polymer binder and to interdiffuse and sinter the powders. To study the microstructural evolution, sintering mechanisms, and grain growth in these wires, both ex situ metallography and in situ X-Ray tomography were conducted while sintering at 800–1050 °C for up to 4 h. After debinding, Ga-rich regions melt and induce transient liquid phase sintering of the surrounding Ni and Mn powders, resulting in localized swelling of the wires and…

Precision lattice parameter determination from transmission diffraction of thick specimens with irregular cross sections

Journal of Applield Crystallography 2019 Volume 52, Pages 40-46

Accurate determination of lattice parameters from X-ray diffraction requires that the diffraction angles be measured very precisely, and significant errors result if the sample–detector separation differs from that assumed. Transmission diffraction from bones, which have a complex cross section and must be left intact, is a situation where this separation is difficult to measure and it may differ from position to position across the specimen. This article describes a method for eliminating the effect of variable sample cross section. Diffraction patterns for each position on the specimen are collected before and after 180° rotation about an axis normal to the…

Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels

Acta Biomaterialia 2019 Volume 85, Pages 84-93

Three-dimensional (3D) printing of decellularized extracellular matrix (dECM) hydrogels is a promising technique for regenerative engineering. 3D-printing enables the reproducible and precise patterning of multiple cells and biomaterials in 3D, while dECM has high organ-specific bioactivity. However, dECM hydrogels often display poor printability on their own and necessitate additives or support materials to enable true 3D structures. In this study, we used a sacrificial material, 3D-printed Pluronic F-127, to serve as a platform into which dECM hydrogel can be incorporated to create specifically designed structures made entirely up of dECM. The effects of 3D dECM are studied in the context…

Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds

Biomaterials Science 2019 Volume 7, Pages 560-570

In this work, we synthesized a novel polymeric biomaterial platform with tunable functionalizability for extrusion-based 3D printing. Biodegradable polymers were synthesized using 4-hydroxyphenethyl 2-(4-hydroxyphenyl)acetate (HTy), which is derived from Tyrosol and 2-(4-hydroxyphenyl)acetic acid. p-Phenylenediacetic acid (PDA) was introduced to enhance crystallinity. To enable functionalizability without deteriorating printability, glutamic acid derivatives were introduced into the polymer design, forming copolymers including poly(HTy-co-45%PDA-co-5%Gluhexenamide ester) (HP5GH), poly(HTy-co-45%PDA-co-5%Glupentynamide ester) (HP5GP), and poly(HTy-co-45%PDA-co-5%BocGlu ester) (HP5BG). The resulting polymers have: two melting temperatures (125–131 °C and 141–147 °C), Young’s moduli of 1.9–2.4 GPa, and print temperatures of 170–190 °C. The molecular weight (Mw) loss due to hydrolytic…

Effect of Dexamethasone on Room Temperature Three-Dimensional Printing, Rheology, and Degradation of a Low Modulus Polyester for Soft Tissue Engineering

ACS Biomaterials Science & Engineering 2019 Volume 5, Issue 2, Pages 846–858

Three-dimensional (3D) printing has enabled benchtop fabrication of customized bioengineered constructs with intricate architectures. Various approaches are being explored to enable optimum integration of such constructs into the physiological environment including addition of bioactive fillers. In this work, we incorporated a corticosteroid drug, dexamethasone (Dex), in a low modulus polyester (SC5050) and examined the effect of Dex incorporation on solvent-, initiator-, and monomer-free pneumatic extrusion-based 3D printing of the polymer. Dex–SC5050 interactions were characterized by plotting thermodynamic binary phase diagrams based on the Flory–Huggins theory. The effect of Dex composition on the 3D printability of the SC5050 polyester was examined…

Multimaterial Segmented Fiber Printing for Gradient Tissue Engineering

Tissue Engineering Part C: Methods 2019 Volume 25, Issue 1, Pages 12-24

In this work, we present a printing method to fabricate scaffolds consisting of multimaterial segmented fibers. Particularly, we developed a reproducible printing process to create single fibers with multiple discrete compositions and control over the distribution of particulate ceramics—namely hydroxyapatite (HA) and β-tricalcium phosphate (TCP)—within poly(ɛ-caprolactone)-based composite scaffolds. Tensile testing revealed that the mechanical integrity of individual segmented fibers was preserved compared with nonsegmented fibers, and microcomputed tomography and thermal analysis confirmed the homogeneous distribution of ceramics incorporated in the fiber compositions. Moreover, we printed and characterized composite scaffolds containing model inverse radial gradients of HA and TCP that could…

On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing

European Journal of Pharmaceutics and Biopharmaceutics 2019 Volume 134, Pages 29-36

Fast and accurate manufacturing of individually tailored solid dosage forms is one of the main challenges for personalized medicine. The use of 3D printers has recently been studied to determine their suitability for personalized drug manufacturing. In the current work, formulations free of organic solvents were developed for a pressure-assisted microsyringe printing method (PAM). The water soluble polymer polyvinyl alcohol-polyethylene glycol graft copolymer (PVA-PEG) was used as matrix, while levetiracetam (LEV) was used as model drug. Furthermore, the influence of a second polymer, polyvinylpyrrolidone-vinyl acetate copolymer (PVP-PVAc) on the properties of the printed tablets was investigated. Tablets were printed using…

3D extruded composite thermoelectric threads for flexible energy harvesting

Nature Communications 2019 Volume 10, Article 5590

Whereas the rigid nature of standard thermoelectrics limits their use, flexible thermoelectric platforms can find much broader applications, for example, in low-power, wearable energy harvesting for internet-of-things applications. Here we realize continuous, flexible thermoelectric threads via a rapid extrusion of 3D-printable composite inks (Bi2Te3 n- or p-type micrograins within a non-conducting polymer as a binder) followed by compression through a roller-pair, and we demonstrate their applications in flexible, low-power energy harvesting. The thermoelectric power factors of these threads are enhanced up to 7 orders-of-magnitude after lateral compression, principally due to improved conductivity resulting from reduced void volume fraction and partial…

Doping of Carbon Quantum Dots (CDs) in Calcium Phosphate Nanorods for Inducing Ectopic Chondrogenesis via Activation of the HIF-α/SOX‑9 Pathway

ACS Omega 2019 Volume 4, Issue 1, Pages 374-386

Calcium phosphate (CaPs)-based nanostructures are mostly known to induce osteogenic differentiation of mesenchymal stem cells (MSCs). However, in the current study, doping of carbon quantum dots into calcium phosphate nanorods (C-CaPs) has been observed to affect the differentiation pathway and enhanced the expression of chondrogenic genes instead of osteogenic ones. Here, we report a microwave-assisted single-step synthesis and doping of carbon dot into calcium phosphate nanorods and their ectopic chondrogenicity in a rodent subcutaneous model. High-resolution transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy studies show that the doping of carbon dots results in p-type semiconductor-like structure formation…

3D Printing of Antimicrobial Alginate/Bacterial-Cellulose Composite Hydrogels by Incorporating Copper Nanostructures

ACS Biomaterials Science & Engineering 2019 Volume 5, Issue 11, Pages 6290-6299

Novel antimicrobial 3D-printed alginate/bacterial-cellulose hydrogels with in situ-synthesized copper nanostructures were developed having improved printability. Prior to 3D printing, two methods were tested for the development of the alginate hydrogels: (a) ionic cross-linking with calcium ions followed by ion exchange with copper ions (method A) and (b) ionic cross-linking with copper ions (method B). A solution containing sodium borohydride, used as a reducing agent, was subsequently added to the hydrogels, producing in situ clusters of copper nanoparticles embedded in the alginate hydrogel matrix. The method used and concentrations of copper and the reducing agent were found to affect the stability…