3D Bioplotter Research Papers

Displaying all papers from 2024 (51 results)

Extrusion-based Additive Manufacturing of Magnetic Heat Exchange Structures for Caloric Applications

Virginia Commonwealth University 2024 Dissertation
V. Sharma

Currently, the commercial building sector accounts for 18% of total U.S. end-use energy consumption, of which almost a third was from on-site combustion of fossil fuels for space and water heating. Magnetic heat pumping (MHP) technology is an energy-efficient, sustainable, environmentally-friendly alternative to conventional vapor-compression cooling technology. Several MHP designs today are predicted to be highly energy efficient, on condition that suitable working materials can be developed. This materials challenge has proven to be daunting due to issues associated with intricate synthesis/post-processing protocols and complications related to shaping the mostly brittle magnetocaloric alloys into thin-walled channeled regenerator structures to facilitate…

Optimization of Biomanufacturing process for Tissue Engineering applications

University of Brescia 2024 Thesis
R. Rovetta

In recent years, tissue engineering has experienced significant advancements, mostly driven by the emergence of additive manufacturing technologies and the integration of biomaterials and cells. This advanced technique enables the creation of intricate structures with diverse components and properties, specifically designed for use in biomedical applications. The primary benefit of this technology is its ability to be customised, which helps minimise post-operative difficulties for patients with orthopaedic diseases and those undergoing tissue transplants. For this purpose, the essential components can be synthesised by the patient’s own cells. However, there are still other obstacles that need to be addressed in order…

Artificial Stimuli-responsive constructs through 4D fabrication

The University of Manchester 2024 Thesis
A. Omar

In the ever-evolving landscape of bioengineering, the current research effort to push the boundaries of biomedical engineering through a multidisciplinary effort using advanced 4D fabrication techniques. This study represents a pioneering effort to create artificial constructs, such as skin, and muscles by leveraging knowledge from material science, mechanical engineering, biomedical engineering and advanced manufacturing. By seamlessly integrating these domains, our approach aims to overcome the inherent complexities associated with tissue engineering. The utilisation of 4D fabrication techniques introduces a dynamic dimension to the fabrication process, allowing for the creation of tissues with intricate spatial and temporal characteristics. The central focus…

Synthesis of Alginate/Collagen Bioink for Bioprinting Respiratory Tissue Models

Journal of Functional Biomaterials 2024 Volume 15, Issue 4, Article 90

Synthesis of bioinks for bioprinting of respiratory tissue requires considerations related to immunogenicity, mechanical properties, printability, and cellular compatibility. Biomaterials can be tailored to provide the appropriate combination of these properties through the synergy of materials with individual pros and cons. Sodium alginate, a water-soluble polymer derived from seaweed, is a cheap yet printable biomaterial with good structural properties; however, it lacks physiological relevance and cell binding sites. Collagen, a common component in the extra cellular matrix of many tissues, is expensive and lacks printability; however, it is highly biocompatible and exhibits sites for cellular binding. This paper presents our…

Ink-Extrusion 3D Printing and Silicide Coating of HfNbTaTiZr Refractory High-Entropy Alloy for Extreme Temperature Applications

Advanced Science 2024 Volume 11, Issue 17, Article 2309693

An oxygen-resistant refractory high-entropy alloy is synthesized in microlattice or bulk form by 3D ink-extrusion printing, interdiffusion, and silicide coating. Additive manufacturing of equiatomic HfNbTaTiZr is implemented by extruding inks containing hydride powders, de-binding under H2, and sintering under vacuum. The sequential decomposition of hydride powders (HfH2+NbH+TaH0.5+TiH2+ZrH2) is followed by in situ X-ray diffraction. Upon sintering at 1400 °C for 18 h, a nearly fully densified, equiatomic HfNbTaTiZr alloy is synthesized; on slow cooling, both α-HCP and β-BCC phases are formed, but on quenching, a metastable single β-BCC phase is obtained. Printed and sintered HfNbTaTiZr alloys with ≈1 wt.% O shows excellent mechanical properties…

3D-ink-printing of monocrystalline YBCO superconductor

Fermi National Accelerator Laboratory 2024 FERMILAB-PUB-23-699-PIP2

Single-crystal microstructure can bring high performance for many materials including piezoelectrics, semiconductors, and cuprate superconductors. Unlike single-crystal metals that can be machined into complex components, most single-crystal ceramics are limited to the shape of thin films or plates due to their brittleness. However, more designs of advanced devices need to break these geometric limitations. 3D-ink-printing can efficiently fabricate complex architectured ceramics, but the microstructure is polycrystals. Here, for the first time, we demonstrate a route to grow single-crystal on 3D printed ceramic-YBa2 Cu 3 O7-x (YBCO) superconductors that can simultaneously have complex architectures and high critical current density. An ink…

Targeting micromotion for mimicking natural bone healing by using NIPAM/Nb2C hydrogel

Bioactive Materials 2024 Volume 39, Pages 41-58

Natural fracture healing is most efficient when the fine-tuned mechanical force and proper micromotion are applied. To mimick this micromotion at the fracture gap, a near-infrared-II (NIR–II)–activated hydrogel was fabricated by integrating two-dimensional (2D) monolayer Nb2C nanosheets into a thermally responsive poly(N-isopropylacrylamide) (NIPAM) hydrogel system. NIR–II–triggered deformation of the NIPAM/Nb2C hydrogel was designed to generate precise micromotion for co-culturing cells. It was validated that micromotion at 1/300 Hz, triggering a 2.37-fold change in the cell length/diameter ratio, is the most favorable condition for the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Moreover, mRNA sequencing and verification revealed that…

[Performance of 3D-printed polylactic acid-nano-hydroxyapatite/chitosan/doxycycline antibacterial scaffold]

Chinese Journal of Tissue Engineering Research 2024 Volume 28, Issue 22, Pages 3532-3538
L. Yan Z. Xuexin

BACKGROUND: Polylactic acid has good biocompatibility and biodegradability, and has become a new orthopedic fixation material. However, the lack of cell recognition signal of this material is not conducive to cell adhesion and osteogenic differentiation, which limits its application in biomaterials. OBJECTIVE: 3D-printed polylactic acid-nano-hydroxyapatite (nHA)/chitosan (CS) scaffold to evaluate its drug sustained-release and biological properties

Carbon fiber reinforced liquid crystalline elastomer composites: a dual exploration in strength augmentation and transformation flexibility through 4D printing

International Journal of Smart and Nano Materials 2024 Volume 15, Issue 2, Pages 312–329

Liquid Crystal Elastomers (LCEs) are renowned for their reversible deformation capabilities. Yet, enhancing their mechanical strength while retaining such flexibility has posed a considerable challenge. To overcome this, we utilized 4D printing to develop an innovative composite of LCE with carbon fiber fabric (LCEC). This approach has notably increased the tensile strength of LCE by eightfold, all the while maintaining its exceptional capacity for reversible deformation. By adjusting the alignment angle between carbon fiber and the LCE printing direction from 0° to 90°, the LCEC demonstrates an array of new deformation patterns, including bending, twisting, wrapping, and S-shaped transformations, which…

Extrusion bioprinting of elastin-containing bioactive double-network tough hydrogels for complex elastic tissue regeneration

Aggregate 2024 Volume 5, Issue 3, Article e477

Despite recent advances in extrusion bioprinting of cell-laden hydrogels, using naturally derived bioinks to biofabricate complex elastic tissues with both satisfying biological functionalities and superior mechanical properties is hitherto an unmet challenge. Here, we address this challenge with precisely designed biological tough hydrogel bioinks featuring a double-network structure. The tough hydrogels consisted of energy-dissipative dynamically crosslinked glycosaminoglycan hyaluronic acid (o-nitrobenzyl-grafted hyaluronic acid) and elastin through Schiff’s base reaction, and free-radically polymerized gelatin methacryloyl. The incorporation of elastin further improved the elasticity, stretchability (∼170% strain), and toughness (∼45 kJ m−3) of the hydrogels due to the random coiling structure. We used this novel…

A dual-crosslinking electroactive hydrogel based on gelatin methacrylate and dibenzaldehyde-terminated telechelic polyethylene glycol for 3D bio-printing

Scientific Reports 2024 Volume 14, Article 4118

Gelatin was widely used as scaffold materials in 3D bio-printing due to its excellent bioactivity and availability and especially that their arginine–glycine–aspartic acid (RGD) sequences could efficiently promote cell adhesion and proliferation. In this study, an electroactive and 3D bio-printable hydrogel was prepared through a two-step chemical cross-linking process. Specifically, residual free amino groups of methacrylated gelatin (GelMA) were cross-linked with the aldehyde groups of dibenzaldehyde-terminated telechelic polyethylene glycol (DF-PEG) via Schiff base bonds, forming a gel at 37 °C. During the subsequent 3D bio-printing process, GelMA underwent UV curing, forming a secondary cross-linked network to the mechanical strength and stability…

3D Printing-Electrospinning Hybrid Nanofibrous Scaffold as LEGO-Like Bricks for Modular Assembling Skeletal Muscle-on-a-Chip Functional Platform

Advanced Fiber Materials 2024

Organ-on-a-chip stands as a pivotal platform for skeletal muscle research while constructing 3D skeletal muscle tissues that possess both macroscopic and microscopic structures remains a considerable challenge. This study draws inspiration from LEGO-like assembly, employing a modular approach to construct muscle tissue that integrates biomimetic macroscopic and microscopic structures. Modular LEGO-like hybrid nanofibrous scaffold bricks were fabricated by the combination of 3D printing and electrospinning techniques. Skeletal muscle cells cultured on these modular scaffold bricks exhibited a highly orientated nanofibrous structure. A variety of construction of skeletal muscle tissues further enabled development by various assembling processes. Moreover, skeletal muscle-on-a-chip (SMoC)…

Cucurbit[8]uril Mediated Supramolecular and Photocrosslinked Interpenetrating Network Hydrogel Matrices for 3D-Bioprinting

Advanced Materials 2024 Volume 36, Issue 26, Article 2313270

Printing of biologically functional constructs is significant for applications in tissue engineering and regenerative medicine. Designing bioinks remains remarkably challenging due to the multifaceted requirements in terms of the physical, chemical, and biochemical properties of the three-dimensional matrix, such as cytocompatibility, printability, and shape fidelity. In order to promote matrix and materials stiffness, while not sacrificing stress relaxation mechanisms which support cell spreading, migration, and differentiation, this work reports an interpenetrating network (IPN) bioink design. The approach makes use of a chemically defined network, combining physical and chemical crosslinking units with a tunable composition and network density, as well as…

Optimization of cellulose nanocrystal (CNC) concentration in polycaprolactone bio-composites for bio-plotting: a robust interpretation of the reinforcement mechanisms

Cellulose 2024 Volume 31, Pages 3657–3680

Bioabsorbable and biodegradable composites have experienced rapid growth, owing to their high demand in the biomedical sector. Polymer-cellulose nanocrystal (CNC) compounds were developed using a medical-grade poly (ε-caprolactone) (PCL) matrix to improve the stiffness and load-bearing capacity of pure PCL. Five PCL/CNCs filament grades were melt-extruded, pelletized, and fed into an industrial bioplotter to fabricate specimens. To assess the effects of CNCs on pure PCL, 14 tests were conducted, including rheological, thermomechanical, and in situ micro-mechanical testing, among others. The porosity and dimensional accuracy of the samples were also documented using micro-computed tomography while scanning electron microscopy was employed for…

Additive Manufacturing of Nanocellulose Aerogels with Structure-Oriented Thermal, Mechanical, and Biological Properties

Advanced Science 2024 Volume 11, Issue 24, Article 2307921

Additive manufacturing (AM) is widely recognized as a versatile tool for achieving complex geometries and customized functionalities in designed materials. However, the challenge lies in selecting an appropriate AM method that simultaneously realizes desired microstructures and macroscopic geometrical designs in a single sample. This study presents a direct ink writing method for 3D printing intricate, high-fidelity macroscopic cellulose aerogel forms. The resulting aerogels exhibit tunable anisotropic mechanical and thermal characteristics by incorporating fibers of different length scales into the hydrogel inks. The alignment of nanofibers significantly enhances mechanical strength and thermal resistance, leading to higher thermal conductivities in the longitudinal…

Chemiresistive Sensor for Enhanced CO2 Gas Monitoring

ACS Sensors 2024 Volume 9, Issue 4, Pages 1735–1742

Carbon dioxide (CO2) gas sensing and monitoring have gained prominence for applications such as smart food packaging, environmental monitoring of greenhouse gases, and medical diagnostic tests. Although CO2 sensors based on metal oxide semiconductors are readily available, they often suffer from limitations such as high operating temperatures (>250 °C), limited response at elevated humidity levels (>60% RH), bulkiness, and limited selectivity. In this study, we designed a chemiresistive sensor for CO2 detection to overcome these problems. The sensing material of this sensor consists of a CO2 switchable polymer based on N-3-(dimethylamino)propyl methacrylamide (DMAPMAm) and methoxyethyl methacrylate (MEMA) [P(D-co-M)], and diethylamine.…

PDMS Microspheres as Rheological Additives for PDMS-Based DIW Inks

Advanced Industrial and Engineering Polymer Research 2024

Direct Ink Writing holds vast potential for additive manufacturing with broad material compatibility as long as appropriate rheological properties are exhibited by the material of choice. Additives are often included to attain the desired rheological properties for printing, but these same additives can yield products with undesirable mechanical properties. For example, silica fillers are used to create silicone inks appropriate for printing but yield cured structures that are too stiff. In this work, we investigate the applicability of PDMS microspheres as a rheological and thixotropic additive for PDMS based DIW inks. We utilize a facile oil-in-water emulsion method to reproducibly…

3D-printed near-infrared-light-responsive on-demand drug-delivery scaffold for bone regeneration

Biomaterials Advances 2024 Volume 159, Article 213804

Although several bioactive 3D-printed bone scaffolds loaded with multiple kinds of biomolecules for enhanced bone regeneration have been recently developed, the manipulation of on-demand release profiles of different biomolecules during bone regeneration remains challenging. Herein, a 3D-printed dual-drug-loaded biomimetic scaffold to regulate the host stem cell recruitment and osteogenic differentiation in a two-stage process for bone regeneration was successfully fabricated. First, a chemotactic small-molecule drug, namely, simvastatin (SIM) was directly incorporated into the hydroxyapatite/collagen bioink for printing and could be rapidly released during the early stage of bone regeneration. Further, near-infrared (NIR)-light-responsive polydopamine-coated hydroxyapatite nanoparticles were designed to deliver the…

Synergistic effects of calcium silicate/zinc silicate dual compounds and in-situ interconnected pores on promoting bone regeneration of composite scaffolds

Biomedical Materials 2024 Volume 19, Number 3, Article 035024

Rapid bone regeneration in implants is important for successful transplantation. In this regard, we report the development of calcium silicate/zinc silicate (CS/ZS) dual-compound-incorporated calcium phosphate cement (CPC) scaffolds with a three-dimensional poly (lactic-co-glycolic acid) network that synergistically promote bone regeneration. In vitro results demonstrated that the incorporation of CS/ZS dual compounds into the CPC significantly promoted the osteogenic differentiation of stem cells compared to the addition of CS or ZS alone. Moreover, the bone-regeneration efficacy of the composite scaffolds was validated by filling in femur condyle defects in rabbits, which showed that the scaffolds with CS and ZS possessed a…

Self-setting calcium phosphate cement scaffolds with pre-forming and in-situ forming interconnected macropores: Comparative study in vitro and in vivo

Ceramics International 2024
G. Qian P. Fan J. Ye

Creating interconnected macropores in calcium phosphate cement (CPC) is an effective strategy to promote its degradation and osteogenesis. However, little attention has been given to the osteogenic effect of the CPC scaffolds with pre-forming and in-situ forming interconnected macropores. Herein, two types of CPC scaffolds were prepared by infiltrating CPC pastes into 3D-printed polycaprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA) networks. Meanwhile, the sacrificial PCL network within CPC was dissolved to obtain the CPC scaffold with approximately 300 μm macropores, whereas the PLGA network was retained within the CPC to obtain the PLGA/CPC scaffold. The results indicated that the PLGA/CPC scaffold…

Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering

ACS Applied Materials & Interfaces 2024 Volume 16, Issue 13, Pages 15761–15772

Utilizing tissue-specific extracellular matrices (ECMs) is vital for replicating the composition of native tissues and developing biologically relevant biomaterials. Human- or animal-derived donor tissues and organs are the current gold standard for the source of these ECMs. To overcome the several limitations related to these ECM sources, including the highly limited availability of donor tissues, cell-derived ECM offers an alternative approach for engineering tissue-specific biomaterials, such as bioinks for three-dimensional (3D) bioprinting. 3D bioprinting is a state-of-the-art biofabrication technology that addresses the global need for donor tissues and organs. In fact, there is a vast global demand for human donor…

Combining direct ink writing with reactive melt infiltration to create architectured thermoelectric legs

Chemical Engineering Journal 2024 Volume 479, Article 147845

We present a new additive-reactive synthesis method where inks – cast into molds or 3D-additively extruded into architectured shapes – are reacted into intermetallic thermoelectric compounds. The new method, as demonstrated for equiatomic TiNiSn, combines: (i) extrusion printing (or casting) of inks containing Ni and Ti powders, (ii) debinding and reactive sintering to form a porous NiTi network, (iii) network infiltration with liquid Sn and subsequent reaction to synthesize the TiNiSn phase. Thin plates, created through this method, show high phase purity and low residual porosity. A thermoelectric figure of merit  = 0.47 ± 0.05 is achieved at 800 K, within the broad range…

3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells

Biomacromolecules 2024 Volume 25, Issue 6, Pages 3312–3324

3D-printed hydrogel scaffolds biomimicking the extracellular matrix (ECM) are key in cartilage tissue engineering as they can enhance the chondrogenic differentiation of mesenchymal stem cells (MSCs) through the presence of active nanoparticles such as graphene oxide (GO). Here, biomimetic hydrogels were developed by cross-linking alginate, gelatin, and chondroitin sulfate biopolymers in the presence of GO as a bioactive filler, with excellent processability for developing bioactive 3D printed scaffolds and for the bioprinting process. A novel bioink based on our hydrogel with embedded human MSCs presented a cell survival rate near 100% after the 3D bioprinting process. The effects of processing…

Towards sustainable, direct printed, organic transistors with biocompatible copolymer gate dielectrics

The Canadian Journal of Chemical Engineering 2024

We have investigated the potential of three dielectric materials to meet the future demands of green dielectrics: Polycaprolactone (PCL) thermoplastic, polyvinyl alcohol (PVA)-carrageenan (CAR) crosslinked biopolymer, and boron nitride nanotubes (BNNTs) as a nano additive in PVA. Metal–insulator–metal (MIM) capacitors and organic thin film transistors (OTFT) were built with bilayer dielectric stacks of PVA-CAR, PVA-PCL, and PVA-BNNT materials to examine their electrical properties. The PVA-CAR layer uses a cyclic freeze thaw process to crosslink PVA and CAR for superior mechanical and electrical properties to either material alone. The PVA-CAR MIM capacitors showed a dielectric constant of 23, which was found…

Chondrogenesis of mesenchymal stromal cells on the 3D printed polycaprolactone/fibrin/decellular cartilage matrix hybrid scaffolds in the presence of piascledine

Journal of Biomaterials Science, Polymer Edition 2024 Volume 35, Issue 6, Pages 799-822

Nowadays, cartilage tissue engineering (CTE) is considered important due to lack of repair of cartilaginous lesions and the absence of appropriate methods for treatment. In this study, polycaprolactone (PCL) scaffolds were fabricated by three-dimensional (3D) printing and were then coated with fibrin (F) and acellular solubilized extracellular matrix (ECM). After extracting adipose-derived stem cells (ADSCs), 3D-printed scaffolds were characterized and compared to hydrogel groups. After inducing the chondrogenic differentiation in the presence of Piascledine and comparing it with TGF-β3 for 28 days, the expression of genes involved in chondrogenesis (AGG, COLII) and the expression of the hypertrophic gene (COLX) were examined…

The 3D-McMap Guidelines: Three-Dimensional Multicomposite Microsphere Adaptive Printing

Biomimetics 2024 Volume 9, Issue 2, Article 94

Microspheres, synthesized from diverse natural or synthetic polymers, are readily utilized in biomedical tissue engineering to improve the healing of various tissues. Their ability to encapsulate growth factors, therapeutics, and natural biomolecules, which can aid tissue regeneration, makes microspheres invaluable for future clinical therapies. While microsphere-supplemented scaffolds have been investigated, a pure microsphere scaffold with an optimized architecture has been challenging to create via 3D printing methods due to issues that prevent consistent deposition of microsphere-based materials and their ability to maintain the shape of the 3D-printed structure. Utilizing the extrusion printing process, we established a methodology that not only…

3D printed PLGA scaffold with nano-hydroxyapatite carrying linezolid for treatment of infected bone defects

Biomedicine & Pharmacotherapy 2024 Volume 172, Article 116228

Background Linezolid has been reported to protect against chronic bone and joint infection. In this study, linezolid was loaded into the 3D printed poly (lactic-co-glycolic acid) (PLGA) scaffold with nano-hydroxyapatite (HA) to explore the effect of this composite scaffold on infected bone defect (IBD). Methods PLGA scaffolds were produced using the 3D printing method. Drug release of linezolid was analyzed by elution and high-performance liquid chromatography assay. PLGA, PLGA-HA, and linezolid-loaded PLGA-HA scaffolds, were implanted into the defect site of a rabbit radius defect model. Micro-CT, H&E, and Masson staining, and immunohistochemistry were performed to analyze bone infection and bone…

3D bioprinting of thermosensitive inks based on gelatin, hyaluronic acid, and fibrinogen: reproducibility and role of printing parameters

Bioprinting 2024 Volume 39, Article e00338

Thermosensitive inks are considered an attractive option for the 3D bioprinting of different tissue types, yet comprehensive information on their reliability, preparation, and properties remains lacking. This paper addresses this gap by presenting a twofold aim: firstly, characterizing the preparation, rheology, and printing aspects of two inks that have demonstrated success in skeletal muscle tissue engineering both in vitro and in vivo. The first ink is composed of fibrinogen, gelatin, hyaluronic acid, and glycerol, while the second is a sacrificial ink made of gelatin, hyaluronic acid, and glycerol. Secondly, from this analysis, we demonstrate how thermosensitive and multicomponent inks can…

3D printed and smart alginate wound dressings with pH-responsive drug and nanoparticle release

Chemical Engineering Journal 2024 Volume 492, Article 152117

The pH of a wound site can undergo a significant change from its normal range of 5.4–5.6 to a more alkaline environment of 7.2–8.9 after being infected by microorganisms. Therefore, the development of a smart material that can respond to this shift in pH and release antimicrobial agents for effective treatment of wound infections holds great promise for the future of wound care. In the present work, we produced 3D printed alginate wound dressings doped with calcium phosphate nanoparticles (CaP NPs), referred to as alginate-CaP nanocomposites hereafter. The CaP NPs enabled pH-responsive switching of the degradation and drug release of…

Correlation between Ca Release and Osteoconduction by 3D-Printed Hydroxyapatite-Based Templates

ACS Applied Materials & Interfaces 2024 Volume 16, Issue 22, Pages 28056–28069

The application of hydroxyapatite (HA)-based templates is quite often seen in bone tissue engineering since that HA is an osteoconductive bioceramic material, which mimics the inorganic component of mineralized tissues. However, the reported osteoconductivity varies in vitro and in vivo, and the levels of calcium (Ca) release most favorable to osteoconduction have yet to be determined. In this study, HA-based templates were fabricated by melt-extrusion 3D-printing and characterized in order to determine a possible correlation between Ca release and osteoconduction. The HA-based templates were blended with poly(lactide-co-trimethylene carbonate) (PLATMC) at three different HA ratios: 10, 30, and 50%. The printability…

Rapid manufacture of sodium polyaluminate electrolyte ceramics for solid state batteries via direct ink writing

Journal of the European Ceramic Society 2024 Volume 44, Issue 8, Pages 5041-5047

Solid-state electrolyte structures using sodium polyaluminate ceramics, have been fabricated for the first time using direct ink writing; a material extrusion-based additive manufacturing process. A series of test samples were prepared using a high solids loading (80 wt%; 51.2 vol%) ceramic paste formulations with suitable rheological characteristics for 3D printing. Following optimum densification via conventional sintering at 1600 °C for 30 min, the additively manufactured electrolyte test samples exhibited an ionic conductivity of σ = 0.14 ± 0.019 S·cm−1 at 300 °C and density of ρ = 3.1 ± 0.02 g·cm−3 (relative density of 95%). These results suggest that direct ink writing of sodium polyaluminates…

Spatial Growth Factor Delivery for 3D Bioprinting of Vascularized Bone with Adipose-Derived Stem/Stromal Cells as a Single Cell Source

ACS Biomaterials Science & Engineering 2024 Volume 10, Issue 3, Pages 1607-1619

Encapsulating multiple growth factors within a scaffold enhances the regenerative capacity of engineered bone grafts through their localization and controls the spatiotemporal release profile. In this study, we bioprinted hybrid bone grafts with an inherent built-in controlled growth factor delivery system, which would contribute to vascularized bone formation using a single stem cell source, human adipose-derived stem/stromal cells (ASCs) in vitro. The strategy was to provide precise control over the ASC-derived osteogenesis and angiogenesis at certain regions of the graft through the activity of spatially positioned microencapsulated BMP-2 and VEGF within the osteogenic and angiogenic bioink during bioprinting. The 3D-bioprinted…

Silk fibroin/polyacrylamide-based tough 3D printing scaffold with strain sensing ability and chondrogenic activity

Composites Part B: Engineering 2024 Volume 271, Article 111173

Cartilage tissue plays an important role in our life activities. The poor self-repair capacity makes cartilage tissue engineering an urgent clinical demand. Among them, the development of tissue engineering scaffolds with both biomimetic features and microenvironment signal sensing abilities could significantly promote the development of cartilage tissue engineering. While most of the reported cartilage scaffolds have no intelligent sensing features. Herein, a ternary composite 3D printing scaffold with both strain sensing ability and desired mechanical property was developed, by using regenerated silk fibroin (RSF) and polyacrylamide (PAM) as main matrixes, and oxidized bacterial cellulose nanofibers (OBC) as filler. Then, the…

Printable Single-Ion Polymer Nanoparticle Electrolytes for Lithium Batteries

Small Science 2024 Volume 4, Issue 3, Article 2300235

New material solutions are searched for the manufacturing and safety of current batteries. Herein, an extrusion printable polymer separator for lithium batteries based on single-ion polymer electrolytes is presented. The polymer electrolytes are based on methacrylic polymeric nanoparticles (NPs) functionalized with a lithium sulfonamide group combined with different organic plasticizers such as sulfolane and carbonates. The synthesis of the polymer NPs is carried out by emulsion copolymerization of methyl methacrylate and lithium sulfonamide methacrylate in the presence of a crosslinker, resulting in particle sizes of less than 30 nm, as shown by electron microscopy. Then polymer electrolytes are prepared by mixing…

Magnetically Actuated GelMA-Based Scaffolds as a Strategy to Generate Complex Bioprinted Tissues

Advanced Materials Technologies 2024 Article 2400119

The 3D bioprinting of complex structures has attracted particular attention in recent years and has been explored in several fields, including dentistry, pharmaceutical technology, medical devices, and tissue/organ engineering. However, it still possesses major challenges, such as decreased cell viability due to the prolongation of the printing time, along with difficulties in preserving the print shape. The 4D bioprinting approach, which is based on controlled shape transformation upon stimulation after 3D bioprinting, is a promising innovative method to overcome these difficulties. Herein, the generation of skeletal muscle tissue-like complex structures is demonstrated by 3D bioprinting of GelMA-based C2C12 mouse myoblast-laden…

Sustainable highly stretchable and tough gelatin-alkali lignin hydrogels for scaffolding and 3D printing applications

Materials Today Communications 2024 Volume 39, Article 108875

Hydrogels and bioinks obtained from gelatin (Gel) generally present poor mechanical properties and require a series of time-consuming and stepwise chemical processes to exhibit improved elasticity and resistance to fatigue. Alkali lignin (AL) is an underutilized by-product of the paper and pulp industry. It is a widely available and inexpensive biomaterial that presents enormous potential for high-value applications owing to its ease of chemical modification and unique naturally occurring polyaromatic structure. This work aims to develop different GelAL hydrogel formulations with a single-step method that are innovative and sustainable. The results obtained from the mechanical, rheological, and degradation studies of…

Enhancing CAR Macrophage Efferocytosis Via Surface Engineered Lipid Nanoparticles Targeting LXR Signaling

Advanced Materials 2024 Volume 36, Issue 19, Article 2308377

The removal of dying cells, or efferocytosis, is an indispensable part of resolving inflammation. However, the inflammatory microenvironment of the atherosclerotic plaque frequently affects the biology of both apoptotic cells and resident phagocytes, rendering efferocytosis dysfunctional. To overcome this problem, a chimeric antigen receptor (CAR) macrophage that can target and engulf phagocytosis-resistant apoptotic cells expressing CD47 is developed. In both normal and inflammatory circumstances, CAR macrophages exhibit activity equivalent to antibody blockage. The surface of CAR macrophages is modified with reactive oxygen species (ROS)-responsive therapeutic nanoparticles targeting the liver X receptor pathway to improve their cell effector activities. The combination…

Microstructure and properties of high-entropy-superalloy microlattices fabricated by direct ink writing

Acta Materialia 2024 Volume 275, Article 120055

Ni-Co-Fe-based high-entropy superalloys (HESAs) are fabricated into microlattices via a three-step process: (i) layer-by-layer extrusion of inks containing elemental powders (Ni, Co, Fe, Cr, Ti) and TiAl3 powders; (ii) sintering to densify and homogenize the struts; (iii) aging to achieve a γ/γ’ microstructure. The struts of the microlattices show a nearly pore-free and fully-homogenized microstructure. Increasing the Ti concentration from 4 at% (Al9Co26Cr7Fe16Ni38Ti4) to 9 at% (Al8Co25Cr7Fe15Ni36Ti9) leads to a significant increase in the volume fraction of strengthening γ’ precipitates, from 51 to 78 %. Furthermore, in the Ti-rich composition, the γ’ precipitates exhibit a sharp-edged cubic morphology with larger…

Tailoring fractal structure via 3D printing to achieve flexible stretchable electrodes based on Ecoflex/CNT/CF

Materials Today Communications 2024 Volume 38, Article 107721

Flexible electrodes are crucial for the widespread application of flexible electronics. Flexible stretchable electrodes are a research hotspot for finding a solution for the inability of flexible electrodes to withstand large deformations. In this study, the suitability of silicone rubber (Ecoflex), carbon nanotube (CNT), and carbon fiber (CF) composite materials for flexible devices and their ratios were evaluated for the first time. 3D-printed electrodes based on fractal structures with tensile insensitivity and high linearity were prepared to achieve integrated stretching of flexible devices. To demonstrate the benefits and impact of fractal structures on electrode performance, we fabricated flexible stretchable electrodes…

3D printing of multi-scale porous β-tricalcium phosphate scaffolds: Mechanical properties and degradation

Open Ceramics 2024 Volume 19, Article 100630

Processing-structure-property relationships of 3D-printed multi-scale porous ceramics were investigated. Direct ink writing (DIW) of oil-templated colloidal pastes produced hierarchically porous beta-tricalcium phosphate (TCP) scaffolds. Print architecture and microporosity within filaments were varied, mimicking bone structure. The scaffolds exhibited 60–70 % porosity with interconnected macropores 300–700 μm and microporosity within the filaments at the 10 micron-scale. Varying surfactant and oil concentrations created two micro-pore morphologies – bubble-like pores (emulsion) and channel-like pores (capillary suspension). Emulsion scaffolds were stronger, stiffer and more reliable than capillary suspension scaffolds under both compression and bending. Reducing nozzle diameter and inter-filament distance improved strength and stiffness,…

Tuning thermoresponsive properties of carboxymethyl cellulose (CMC)–agarose composite bioinks to fabricate complex 3D constructs for regenerative medicine

International Journal of Biological Macromolecules 2024 Volume 260, Part 1, Article 129443

3D bioprinting has emerged as a viable tool to fabricate 3D tissue constructs with high precision using various bioinks which offer instantaneous gelation, shape fidelity, and cytocompatibility. Among various bioinks, cellulose is the most abundantly available natural polymer & widely used as bioink for 3D bioprinting applications. To mitigate the demanding crosslinking needs of cellulose, it is frequently chemically modified or blended with other polymers to develop stable hydrogels. In this study, we have developed a thermoresponsive, composite bioink using carboxymethyl cellulose (CMC) and agarose in different ratios (9:1, 8:2, 7:3, 6:4, and 5:5). Among the tested combinations, the 5:5…

3D bioprinted mesenchymal stem cell laden scaffold enhances subcutaneous vascularization for delivery of cell therapy

Biomedical Microdevices 2024 Volume 26, Issue 3, Article 29

Subcutaneous delivery of cell therapy is an appealing minimally-invasive strategy for the treatment of various diseases. However, the subdermal site is poorly vascularized making it inadequate for supporting engraftment, viability, and function of exogenous cells. In this study, we developed a 3D bioprinted scaffold composed of alginate/gelatin (Alg/Gel) embedded with mesenchymal stem cells (MSCs) to enhance vascularization and tissue ingrowth in a subcutaneous microenvironment. We identified bio-ink crosslinking conditions that optimally recapitulated the mechanical properties of subcutaneous tissue. We achieved controlled degradation of the Alg/Gel scaffold synchronous with host tissue ingrowth and remodeling. Further, in a rat model, the Alg/Gel…

Manufacture dependent differential biodegradation of 3D printed shape memory polymers

Virtual and Physical Prototyping 2024 Volume 19, Issue 1, Article e2371504

In the field of tissue engineering, 3D printed shape memory polymers (SMPs) are drawing increased interest. Understanding how these 3D printed SMPs degrade is critical for their use in the clinic, as small changes in material properties can significantly change how they behave after in vivo implantation. Degradation of 3D printed acrylated poly(glycerol-dodecanedioate) (APGD) was examined via in vitro hydrolytic, enzymatic, and in vivo subcutaneous implantation assays. Three APGD manufacturing modalities were assessed to determine differences in degradation. Material extrusion samples showed significantly larger mass and volume loss at 2 months, compared to lasercut and vat photopolymerization samples, under both…

Bioprinted scaffolds assembled as synthetic skin grafts by natural hydrogels containing fibroblasts and bioactive agents

International Journal of Polymeric Materials and Polymeric Biomaterials 2024 Volume 73, Issue 11, Pages 927–945

Hydrogel skin grafts provide a moist environment and act as a regenerative template to the newly formed tissue. In this study, we developed 3D-bio-printed hydrogels using methacrylated pectin and methacrylated gelatin together with an antibacterial agent (curcumin), a bioactive agent (Vitamin-C) and fibroblast cells. Curcumin release was almost 10 times higher at pH 7.4 than pH 5.0, and it demonstrated antimicrobial affinity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The developed 3D-bio-printed hydrogels containing cells and bioactive agents demonstrated high cell viability, cell proliferation, and collagen production, and are promising skin graft candidates for the treatment of full-thickness problematic…

3D bioprinting of in vitro porous hepatoma models: establishment, evaluation, and anticancer drug testing

Bio-Design and Manufacturing 2024 Volume 7, Pages 137-152

Traditional tumor models do not tend to accurately simulate tumor growth in vitro or enable personalized treatment and are particularly unable to discover more beneficial targeted drugs. To address this, this study describes the use of three-dimensional (3D) bioprinting technology to construct a 3D model with human hepatocarcinoma SMMC-7721 cells (3DP-7721) by combining gelatin methacrylate (GelMA) and poly(ethylene oxide) (PEO) as two immiscible aqueous phases to form a bioink and innovatively applying fluorescent carbon quantum dots for long-term tracking of cells. The GelMA (10%, mass fraction) and PEO (1.6%, mass fraction) hydrogel with 3:1 volume ratio offered distinct pore-forming characteristics,…

Influence of Polymeric Microparticle Size and Loading Concentration on 3D Printing Accuracy and Degradation Behavior of Composite Scaffolds

3D Printing and Additive Manufacturing 2024 Volume 11, Number 2, Pages e813–e827

Successful employment of 3D printing for delivery of therapeutic biomolecules requires protection of their bioactivity on exposure to potentially inactivating conditions. Although intermediary encapsulation of the biomolecules in polymeric particulate delivery vehicles is a promising strategy for this objective, the inclusion of such particles in 3D printing formulations may critically impact the accuracy or precision of 3D printed scaffolds relative to their intended designed architectures, as well as the degradation behavior of both the scaffolds and the included particles. The present work aimed to elucidate the effect of poly(d,l-lactic-co-glycolic acid) particle size and loading concentration on material accuracy, machine precision,…

Optimization of 3D Printing Parameters of Polylactic-Co-Glycolic Acid-Based Biodegradable Antibacterial Materials Using Fused Deposition Modeling

3D Printing and Additive Manufacturing 2024 Volume 11, Number 3, Pages e1343-e1355

A high incidence of ureteral diseases was needed to find better treatments such as implanting ureteral stents. The existing ureteral stents produced a series of complications such as bacterial infection and biofilm after implantation. The fused deposition modeling (FDM) of 3D printing biodegradable antibacterial ureteral stents had gradually become the trend of clinical treatment. But it was necessary to optimize the FDM 3D printing parameters of biodegradable bacteriostatic materials to improve the precision and performance of manufacturing. In this study, polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL), and nanosilver (AgNP) were mixed by the physical blending method, and the 3D printing parameters…

Polysiloxane Inks for Multimaterial 3d Printing of High-Permittivity Dielectric Elastomers

Advanced Functional Materials 2024 Volume 34, Issue 17, Article 2313167

Dielectric elastomer transducers (DET) are promising candidates for electrically-driven soft robotics. However, the high viscosity and low yield stress of DET formulations prohibit 3D printing, the most common manufacturing method for designer soft actuators. DET inks optimized for direct ink writing (DIW) produce elastomers with high stiffness and mechanical losses, diminishing the utility of DET actuators. To address the antagonistic nature of processing and performance constraints, principles of capillary suspensions are used to engineer DIW DET inks. By blending two immiscible polysiloxane liquids with a filler, a capillary ink suspension is obtained, in which the ink rheology can be tuned…

3D Printing Process Research and Performance Tests on Sodium Alginate-Xanthan Gum-Hydroxyapatite Hybridcartilage Regenerative Scaffolds

3D Printing and Additive Manufacturing 2024 Volum3 11, Number 3, Pages e1271–e1286

Cartilage injury is a common occurrence in the modern world. Compared with traditional treatment methods, bio-3D printing technology features better utility in the field of cartilage repair and regeneration, but still faces great challenges. For example, there is currently no means to generate blood vessels inside the scaffolds, and there remains the question of how to improve the biocompatibility of the generated scaffolds, all of which limit the application of bio-3D printing technology in this area. The main objective of this article was to prepare sodium alginate-xanthan gum-hydroxyapatite (SA-XG-HA) porous cartilage scaffolds that can naturally degrade in the human body…

A Polymer-Based Chemiresistive Gas Sensor for Selective Detection of Ammonia Gas

Advanced Sensor Research 2024 Volume 3, Issue 1, Article 2300125

Breath analysis is a non-invasive tool used in medical diagnosis. However, the current generation of breath analyzers is expensive, time-consuming, and requires sample gas separation. In this work, a simple, yet effective, low-cost ammonia gas sensor based on poly(2-acrylamido-2-methyl-1-propanesulfonic acid) is presented for non-invasive medical diagnosis. The designed sensor has a broad detection range to ammonia gas up to 1000 ppm with a limit of detection of 30 ppb. This is a robust sensor, which functions at high relative humidity (RH) (>90%) and exhibits consistent electrical responses under different test conditions. The result of a blind test validates the sensor’s…

3D bioactive ionic liquid-based architectures: An anti-inflammatory approach for early-stage osteoarthritis

Acta Biomaterialia 2024 Volume 173, Pages 298-313

3D bioprinting enables the fabrication of biomimetic cell-laden constructs for cartilage regeneration, offering exclusive strategies for precise pharmacological screenings in osteoarthritis (OA). Synovial inflammation plays a crucial role in OA’s early stage and progression, characterized by the increased of the synovial pro-inflammatory mediators and cytokines and chondrocyte apoptosis. Therefore, there is an urgent need to develop solutions for effectively managing the primary events associated with OA. To address these issues, a phenolic-based biocompatible ionic liquid approach, combining alginate (ALG), acemannan (ACE), and cholinium caffeate (Ch[Caffeate]), was used to produce easily printable bioinks. Through the use of this strategy 3D constructs…