3D Bioplotter Research Papers
Zirconia Incorporation in 3D Printed β-Ca2SiO4 Scaffolds on Their Physicochemical and Biological Property
3D printed bioceramics derived from preceramic polymers are of great interest in bone tissue engineering due to their simplified fabrication processes. In this study, three-dimensional (3D) porous β-Ca2SiO4 scaffolds incorporated with ZrO2 were fabricated from silicone resin loaded with active CaCO3 and inert ZrO2 fillers by 3D printing. The fabricated scaffolds possessed uniform interconnected macropores with a high porosity (> 67%). The results showed that the increase of ZrO2 incorporation significantly enhanced the compressive strength, and stimulated cell proliferation and differentiation of osteoblasts. Importantly, the in vivo results indicated that the ZrO2-incorporated β-Ca2SiO4 scaffolds improved osteogenic capacity compared to pure…
Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models
Infection is one of the pivotal causes of nonunion in large bone defect after trauma or tumor resection. Three-dimensional (3D) composite scaffold with multifunctional-therapeutic properties offer many advantages over allogenic or xenogenic bone grafting for the restoration of challenging infected bone defects. In the previous study, we demonstrated that quaternized chitosan (HACC)-grafted polylactide-co-glycolide (PLGA)/hydroxyapatite (HA) scaffold (PLGA/HA/HACC) via 3D-printing technique exhibited significantly improved antimicrobial and osteoconductive property in vitro, together with good biocompatibility in vivo. Hence, the present study further investigated whether such an innovative bone substitute could effectively inhibit the bacterial biofilm formation and promote bone regeneration in vivo.…
Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan
Contaminated or infected bone defects remain serious challenges in clinical trauma and orthopaedics, and a bone substitute with both osteoconductivity and antibacterial properties represents an improvement for treatment strategy. In this study, quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC) was grafted to 3D-printed scaffolds composed of polylactide-co-glycolide (PLGA) and hydroxyapatite (HA), in order to design bone engineering scaffolds endowed with antibacterial and osteoconductive properties. We found that both the PLGA/HA/HACC and PLGA/HACC composite scaffolds decreased bacterial adhesion and biofilm formation under in vitro and in vivo conditions. Additionally, ATP leakage assay indicated that immobilizing HACC on the scaffolds could effectively…
Tuning thermoresponsive properties of carboxymethyl cellulose (CMC)–agarose composite bioinks to fabricate complex 3D constructs for regenerative medicine
3D bioprinting has emerged as a viable tool to fabricate 3D tissue constructs with high precision using various bioinks which offer instantaneous gelation, shape fidelity, and cytocompatibility. Among various bioinks, cellulose is the most abundantly available natural polymer & widely used as bioink for 3D bioprinting applications. To mitigate the demanding crosslinking needs of cellulose, it is frequently chemically modified or blended with other polymers to develop stable hydrogels. In this study, we have developed a thermoresponsive, composite bioink using carboxymethyl cellulose (CMC) and agarose in different ratios (9:1, 8:2, 7:3, 6:4, and 5:5). Among the tested combinations, the 5:5…
3D bioprinted mesenchymal stem cell laden scaffold enhances subcutaneous vascularization for delivery of cell therapy
Subcutaneous delivery of cell therapy is an appealing minimally-invasive strategy for the treatment of various diseases. However, the subdermal site is poorly vascularized making it inadequate for supporting engraftment, viability, and function of exogenous cells. In this study, we developed a 3D bioprinted scaffold composed of alginate/gelatin (Alg/Gel) embedded with mesenchymal stem cells (MSCs) to enhance vascularization and tissue ingrowth in a subcutaneous microenvironment. We identified bio-ink crosslinking conditions that optimally recapitulated the mechanical properties of subcutaneous tissue. We achieved controlled degradation of the Alg/Gel scaffold synchronous with host tissue ingrowth and remodeling. Further, in a rat model, the Alg/Gel…
3D Bioprinting Using Synovium-Derived MSC-Laden Photo-Cross-Linked ECM Bioink for Cartilage Regeneration
In this study, inspired by the components of cartilage matrix, a photo-cross-linked extracellular matrix (ECM) bioink composed of modified proteins and polysaccharides was presented, including gelatin methacrylate, hyaluronic acid methacrylate, and chondroitin sulfate methacrylate. The systematic experiments were performed, including morphology, swelling, degradation, mechanical and rheological tests, printability analysis, biocompatibility and chondrogenic differentiation characterization, and RNA sequencing (RNA-seq). The results indicated that the photo-cross-linked ECM hydrogels possessed suitable degradation rate and excellent mechanical properties, and the three-dimensional (3D) bioprinted ECM scaffolds obtained favorable shape fidelity and improved the basic properties, biological properties, and chondrogenesis of synovium-derived MSCs (SMSCs). The strong…
Biodegradable Multi-layered Silk Fibroin-PCL Stent for the Management of Cervical Atresia: In Vitro Cytocompatibility and Extracellular Matrix Remodeling In Vivo
Cervical atresia is a rare congenital Müllerian duct anomaly that manifests as the absence or deformed nonfunctional presence of the cervix. Herein, a multi-layered biodegradable stent is fabricated using a homogeneous blend of silk fibroin with polycaprolactone using hexafluoroisopropanol as a common solution. Briefly, a concentric cylinder of 3D honeycomb layer is sandwiched within electrospun sheets for fixing at the cervico-uterine junction to pave the way of cervical reconstruction. An average length of 40 mm with 3 mm diameter is fabricated for the hybrid stent design. SEM evidences an evenly distributed pore architecture of the electrospun layer, and mechanical characterization…
4D Printed Shape Memory Polyurethane-Based Composite for Bionic Cartilage Scaffolds
Repair of articular cartilage defects is a major challenge in orthopedic surgery due to the deficient self-regeneration capability. Cartilage tissue engineering scaffolds provide a promising approach to cartilage defect repair. Proper mechanical properties, interconnected internal structure, customized shape, and minimally invasive treatment are urgent requirements for a qualified cartilage scaffold. Here, a shape memory composite used for cartilage defects is prepared by adding nanohydroxyapatite into a shape memory polyurethane matrix, exhibiting good mechanical properties and biocompatibility. Based on its rheological properties, the composite melt can be printed into 4D printed structures with high precision and quality in a simple and…
Three-Dimensionally Printed Hyperelastic Bone Scaffolds Accelerate Bone Regeneration in Critical-Size Calvarial Bone Defects
Background: Autologous bone grafts remain the gold standard for craniofacial reconstruction despite limitations of donor-site availability and morbidity. A myriad of commercial bone substitutes and allografts are available, yet no product has gained widespread use because of inferior clinical outcomes. The ideal bone substitute is both osteoconductive and osteoinductive. Craniofacial reconstruction often involves irregular three-dimensional defects, which may benefit from malleable or customizable substrates. “Hyperelastic Bone” is a three-dimensionally printed synthetic scaffold, composed of 90% by weight hydroxyapatite and 10% by weight poly(lactic-co-glycolic acid), with inherent bioactivity and porosity to allow for tissue integration. This study examines the capacity of…
3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing
Promoting rapid healing of diabetic wounds caused by hyperglycemia, bacterial infection, and chronic inflammation is a global challenge. To address this issue, we design and prepare a novel cerium-based MOF nanozyme hydrogel via 3D printing technology to provide a personalized hydrogel wound dressing. The hydrogel is unique in that cerium-based MOFs are grown into the hydrogel network, simplifying the printing process of MOF hydrogel. The prepared hydrogel exhibits specific catalytic activity to various oxygen free radicals and glucose concentration-dependent color changes due to the interconversion between different valence cerium ions. This feature allows for indirect monitoring of glucose content around…
A modular hydrogel bioink containing microsphere-embedded chondrocytes for 3D-printed multiscale composite scaffolds for cartilage repair
Articular cartilage tissue engineering is being considered an alternative treatment strategy for promoting cartilage damage repair. Herein, we proposed a modular hydrogel-based bioink containing microsphere-embedded chondrocytes for 3D printing multiscale scaffolds integrating the micro and macro environment of the native articular cartilage. Gelatin methacryloyl (GelMA)/alginate microsphere was prepared by a microfluidic approach, and the chondrocytes embedded in the microspheres remained viable after being frozen and resuscitated. The modular hydrogel bioink could be printed via the gel-in-gel 3D bioprinting strategy for fabricating the multiscale hydrogel-based scaffolds. Meanwhile, the cells cultured in the scaffolds showed good proliferation and differentiation. Furthermore, we also found that…
Switch-on mode of bioenergetic channels regulated by curcumin-loaded 3D composite scaffold to steer bone regeneration
Metabolic energy to steer osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs) could be a promising therapeutic target for bone tissue engineering (BTE), but prior knowledge of this issue is limited. To address bone defects with BTE, we customized a three-dimensional (3D)-printed composite scaffold (Cur@MS) to allow the controlled release of curcumin, which could facilitate the “switch-on” mode of Glucose transporter 1 (GLUT1) in BMSCs. Consequently, bioenergetic channels, i.e. glucose uptake, were “switched on” to activate GLUT1-RUNX2 crosstalk, which was closely orchestrated with bone regeneration. Furthermore, curcumin-induced cholesterol/lipid raft (Cho/LR) was a “sensor” to trigger the “switch” (GLUT1) by…
A Novel 3D-Printed/Porous Conduit with Tunable Properties to Enhance Nerve Regeneration Over the Limiting Gap Length
Engineered grafts constitute an alternative to autologous transplant for repairing severe peripheral nerve injuries. However, current clinically available solutions have substantial limitations and are not suited for the repair of long nerve defects. A novel design of nerve conduit is presented here, which consists of a chitosan porous matrix embedding a 3D-printed poly-ε-caprolactone mesh. These materials are selected due to their high biocompatibility, safe degradability, and ability to support the nerve regeneration process. The proposed design allows high control over geometrical features, pores morphology, compression resistance, and bending stiffness, yielding tunable and easy-to-manipulate grafts. The conduits are tested in chronic…
The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs
Three Dimensional (3D) bioprinting is one of the most recent additive manufacturing technologies and enables the direct incorporation of cells within a highly porous 3D-bioprinted construct. While the field has mainly focused on developing methods for enhancing printing resolution and shape fidelity, little is understood about the biological impact of bioprinting on cells. To address this shortcoming, this study investigated the in vitro and in vivo response of human osteoblasts subsequent to bioprinting using gelatin methacryloyl (GelMA) as the hydrogel precursor. First, bioprinted and two-dimensional (2D) cultured osteoblasts were compared, demonstrating that the 3D microenvironment from bioprinting enhanced bone-related gene…
3D-printed porous functional composite scaffolds with polydopamine decoration for bone regeneration
Large size bone defects affect human health and remain a worldwide health problem that needs to be solved immediately. 3D printing technology has attracted substantial attention for preparing penetrable multifunctional scaffolds to promote bone reconditioning and regeneration. Inspired by the spongy structure of natural bone, novel porous degradable scaffolds have been printed using polymerization of lactide and caprolactone (PLCL) and bioactive glass 45S5 (BG), and polydopamine (PDA) was used to decorate the PLCL/BG scaffolds. The physicochemical properties of the PLCL/BG and PLCL/BG/PDA scaffolds were measured, and their osteogenic and angiogenic effects were characterized through a series of experiments both in…
Preclinical Safety of a 3D-Printed Hydroxyapatite-Demineralized Bone Matrix Scaffold for Spinal Fusion
Objective. The objective of this study was to compare the host inflammatory response of our previously described hyperelastic, 3D-printed (3DP) hydroxyapatite (HA)-demineralized bone matrix (DBM) composite scaffold to the response elicited with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in a preclinical rat posterolateral lumbar fusion model. Summary of Background Data. Our group previously found that this 3D-printed HA-DBM composite material shows promise as a bone graft substitute in a preclinical rodent model, but its safety profile had yet to be assessed. Methods. Sixty female Sprague-Dawley rats underwent bilateral posterolateral intertransverse lumbar spinal fusion using with the following…
Osteosarcoma progression in biomimetic matrix with different stiffness: Insights from a three-dimensional printed gelatin methacrylamide hydrogel
Recent studies on osteosarcoma and matrix stiffness are still mostly performed in a 2D setting, which is distinct from in vivo conditions. Therefore, the results from the 2D models may not reflect the real effect of matrix stiffness on cell phenotype. Here, we employed a 3D bioprinted osteosarcoma model, to study the effect of matrix stiffness on osteosarcoma cells. Through density adjustment of GelMA, we constructed three osteosarcoma models with distinct matrix stiffnesses of 50, 80, and 130 kPa. In this study, we found that osteosarcoma cells proliferated faster, migrated more actively, had a more stretched morphology, and a lower…
Regional specific tunable meniscus decellularized extracellular matrix (MdECM) reinforced bioink promotes anistropic meniscus regeneration
The healing of meniscus injuries poses a significant challenge, as prolonged failure to heal can lead to osteoarthritis, which presents a therapeutic dilemma in the field of sports medicine. Decellularized extracellular matrix (MdECM) derived from natural meniscus, and the incorporated growth factors have been used for potential fibrochondrocyte induction and meniscus regeneration. However, homogeneous MdECM is difficult to achieve region-specific biomimetic microenvironment for tissue regeneration. In this study, we successfully prepared a region-specific MdECM, which were then mixed with an ultraviolet responsible Gelatin Methacryloyl (GelMA)/hyaluronic acid Methacryloy (HAMA) hydrogel incorporated with bioactive factors, faciliatated a functional region-specific bioink. The 3D…
Influence of surface engineering on 3D printed Ti lattice structure towards enhanced tissue integration: An in vitro and in vivo study
Reconstruction of segmental defects are popularly approached with surface engineered additively manufactured scaffolds owing to its enhanced post-surgery tissue integration properties. The present work is aimed at fabrication of Ti lattice structures using 3D printing, with a novel approach of silane chemistry-based surface modification of those Ti-surfaces with osteogenic peptides (OGP). The lattice structures with 0.6 mm strut-diameter having 0.5 mm inter-strut distance were chosen for fabrication using an extrusion-based 3D printing. Based on the evidence, it could be concluded that extrusion-based 3D printing is an optimal alternative as compared to those high cost incurring additive manufacturing processes. Therefore, OGP…
Magnesium oxide regulates the degradation behaviors and improves the osteogenesis of poly(lactide-co-glycolide) composite scaffolds
Poly (lactic-co-glycolic acid) (PLGA) is a star biodegradable polymer widely studied and applied in the biomedical field. Improving the acidic microenvironment caused by its degradation products and regulating its degradation behavior are still urgent scientific and technological problems to be solved. In this study, to regulate the degradation behaviors of PLGA and improve its bioactivity, hydroxyapatite (HA) and magnesium oxide (MgO) were incorporated into PLGA substrate in different proportions and a series of 3D-printing PLGA/HA/MgO (PHM) composite porous scaffolds were prepared. Then the physicochemical properties, degradation behaviors, in vitro and in vivo biological performance of fabricated scaffolds were systematically studied.…
3D-printed high-density polyethylene scaffolds with bioactive and antibacterial layer-by-layer modification for auricle reconstruction
High-density polyethylene (HDPE) is a promising material for the development of scaffold implants for auricle reconstruction. However, preparing a personalized HDPE auricle implant with favorable bioactive and antibacterial functions to promote skin tissue ingrowth is challenging. Herein, we present 3D-printed HDPE auricle scaffolds with satisfactory pore size and connectivity. The layer-by-layer (LBL) approach was applied to achieve the improved bioactive and antibacterial properties of these 3D printed scaffolds. The HDPE auricle scaffolds were fabricated using an extrusion 3D printing approach, and the individualized macrostructure and porous microstructure were both adjusted by the 3D printing parameters. The polydopamine (pDA) coating method…
Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration
Critical bone defects with a sluggish rate of auto-osteoconduction and imperfect reconstruction are motivators for the development of an alternate innovative approach for the regeneration of bone. Tissue engineering for bone regeneration signifies an advanced way to overcome this problem by creating an additional bone tissue substitute. Among different fabrication techniques, the 3D printing technique is obviously the most efficient and advanced way to fabricate an osteoconductive scaffold with a controlled porous structure. In the current article, the polycarbonate and polyester diol based polyurethane–urea (P12) was synthesized and 3D porous nanohybrid scaffolds (P12/TP-nHA) were fabricated using the 3D printing technique…
4D printed orbital stent for the treatment of enophthalmic invagination
Currently, the implants used for enophthalmic invagination have the disadvantages of precise filling difficulty, weak filling ability, large surgical wounds, and lack of CT development. Here, a CT-developable orbital stent was manufactured via 4D printing of a shape memory polyurethane composite for enophthalmos treatment. The composite was endowed with good CT development properties via incorporation of gold nanoparticles and nano-hydroxyapatite. Based on the bionic idea and CT reconstruction technique, a 4D printed orbital stent with a bionic honeycomb pore structure and an outer contour matching the orbital coloboma was designed to support the orbital tissue more accurately and stably. CT…
Development of a borosilicate bioactive glass scaffold incorporating calcitonin gene-related peptide for tissue engineering
Protein delivery and release from synthetic scaffold materials are major challenges within the field of bone tissue engineering. In this study, 13-93B1.5 borosilicate bioactive glass (BSG) base paste was 3D printed to produce BSG-based scaffolds with high porosity (59.85 ± 6.04%) and large pore sizes (350–400 μm) for functionalization with a sodium alginate (SA)/calcitonin gene-related peptide (CGRP) hydrogel mixture. SA/CGRP hydrogel was uniformly filled into the interconnected pores of 3D printed BSG constructs to produce BSG-SA/CGRP scaffolds which were subject to bioactivity and biocompatibility analysis. BSG scaffolds filled with SA hydrogel underwent dissolution in simulated body fluid (SBF), resulting in…
Efficacy of treating segmental bone defects through endochondral ossification: 3D printed designs and bone metabolic activities
Three-dimensional printing (3D printing) is a promising technique for producing scaffolds for bone tissue engineering applications. Porous scaffolds can be printed directly, and the design, shape and porosity can be controlled. 3D synthetic biodegradable polymeric scaffolds intended for in situ bone regeneration must meet stringent criteria, primarily appropriate mechanical properties, good 3D design, adequate biocompatibility and the ability to enhance bone formation. In this study, healing of critical-sized (5 mm) femur defects of rats was enhanced by implanting two different designs of 3D printed poly(l-lactide-co-ε-caprolactone) (poly(LA-co-CL)) scaffolds seeded with rat bone marrow mesenchymal stem cells (rBMSC), which had been pre-differentiated…
Long-Term Controlled Growth Factor Release Using Layer-by-Layer Assembly for the Development of In Vivo Tissue-Engineered Blood Vessels
The development of a well-designed tissue-engineered blood vessel (TEBV) still remains a challenge. In recent years, approaches in which the host response to implanted biomaterials is used to generate vascular constructs within the patient’s body have gained increasing interest. The delivery of growth factors to these in situ-engineered vascular grafts might enhance myofibroblast recruitment and the secretion of essential extracellular matrix proteins, thereby optimizing their functional properties. Layer-by-layer (LbL) coating has emerged as an innovative technology for the controlled delivery of growth factors in tissue engineering applications. In this study, we combined the use of surface-etched polymeric rods with LbL…
Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis
Repair of large bone defects represents a major challenge for orthopedic surgeons. The newly formed microvessels inside grafts play a crucial role in successful bone tissue engineering. Previously, an active role for mesenchymal stem cell (MSC)-derived exosomes in blood vessel development and progression was suggested in the repair of multiple tissues. However, the reports on the application of MSC-derived exosomes in the repair of large bone defects are sparse. In this study, we encapsulated umbilical MSC-derived exosomes (uMSCEXOs) in hyaluronic acid hydrogel (HA-Gel) and combined them with customized nanohydroxyapatite/poly-ε-caprolactone (nHP) scaffolds to repair cranial defects in rats. Imaging and histological…
Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold
Critical oral-maxillofacial bone defects, damaged by trauma and tumors, not only affect the physiological functions and mental health of patients but are also highly challenging to reconstruct. Personalized biomaterials customized by 3D printing technology have the potential to match oral-maxillofacial bone repair and regeneration requirements. Laponite (LAP) nanosilicates have been added to biomaterials to achieve biofunctional modification owing to their excellent biocompatibility and bioactivity. Herein, porous nanosilicate-functionalized polycaprolactone (PCL/LAP) was fabricated by 3D printing technology, and its bioactivities in bone regeneration were investigated in vitro and in vivo. In vitro experiments demonstrated that PCL/LAP exhibited good cytocompatibility and enhanced the…
3D Printed Biodegradable Polyurethaneurea Elastomer Recapitulates Skeletal Muscle Structure and Function
Effective skeletal muscle tissue engineering relies on control over the scaffold architecture for providing muscle cells with the required directionality, together with a mechanical property match with the surrounding tissue. Although recent advances in 3D printing fulfill the first requirement, the available synthetic polymers either are too rigid or show unfavorable surface and degradation profiles for the latter. In addition, natural polymers that are generally used as hydrogels lack the required mechanical stability to withstand the forces exerted during muscle contraction. Therefore, one of the most important challenges in the 3D printing of soft and elastic tissues such as skeletal…
3D-Printing Biodegradable PU/PAAM/Gel Hydrogel Scaffold with High Flexibility and Self-Adaptibility to Irregular Defects for Nonload-Bearing Bone Regeneration
A three-dimensional (3D) printed biodegradable hydrogel scaffold with a strong self-expanding ability to conform to the contour of irregular bone defects and be closely adjacent to host tissues is reported herein. The scaffold has a triple cross-linked network structure consisting of photo-cross-linked polyacrylamide (PAAM) and polyurethane (PU) as the primary IPN network and chemical cross-linked gelatin (Gel) as the secondary network, which confers the scaffold with good mechanical properties. The addition of PU in the polymerization process of acrylamide (AAM) can improve the ultraviolet (UV) photocuring efficiency of the hydrogel and incorporate abundant hydrogen bonds between the PAAM copolymer chain…
Enhanced In Vivo Vascularization of 3D-Printed Cell Encapsulation Device Using Platelet-Rich Plasma and Mesenchymal Stem Cells
The current standard for cell encapsulation platforms is enveloping cells in semipermeable membranes that physically isolate transplanted cells from the host while allowing for oxygen and nutrient diffusion. However, long-term viability and function of encapsulated cells are compromised by insufficient oxygen and nutrient supply to the graft. To address this need, a strategy to achieve enhanced vascularization of a 3D-printed, polymeric cell encapsulation platform using platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) is investigated. The study is conducted in rats and, for clinical translation relevance, in nonhuman primates (NHP). Devices filled with PRP, MSCs, or vehicle hydrogel are subcutaneously…
3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion
Engineering hierarchical vasculatures is critical for creating implantable functional thick tissues. Current approaches focus on fabricating mesoscale vessels for implantation or hierarchical microvascular in vitro models, but a combined approach is yet to be achieved to create engineered tissue flaps. Here, millimetric vessel-like scaffolds and 3D bioprinted vascularized tissues interconnect, creating fully engineered hierarchical vascular constructs for implantation. Endothelial and support cells spontaneously form microvascular networks in bioprinted tissues using a human collagen bioink. Sacrificial molds are used to create polymeric vessel-like scaffolds and endothelial cells seeded in their lumen form native-like endothelia. Assembling endothelialized scaffolds within vascularizing hydrogels incites…
Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation
The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) – osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold. We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk, resulting in vascularized bone regeneration. Following implantation in a…
Osteoinductivity and biomechanical assessment of a 3D printed demineralized bone matrix-ceramic composite in a rat spine fusion model
We recently developed a recombinant growth factor-free bone regenerative scaffold composed of stoichiometric hydroxyapatite (HA) ceramic particles and human demineralized bone matrix (DBM) particles (HA-DBM). Here, we performed the first pre-clinical comparative evaluation of HA-DBM relative to the industry standard and established positive control, recombinant human bone morphogenetic protein-2 (rhBMP-2), using a rat posterolateral spinal fusion model (PLF). Female Sprague–Dawley rats underwent bilateral L4-L5 PLF with implantation of the HA-DBM scaffold or rhBMP-2. Fusion was evaluated using radiography and blinded manual palpation, while biomechanical testing quantified the segmental flexion-extension range-of-motion (ROM) and stiffness of the fused segments at 8-weeks postoperatively.…
Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and 3D printing polycaprolactone scaffolds using a rat model
Background We evaluated the outcome of esophageal reconstructions using tissue-engineered scaffolds. Method Partial esophageal defects were reconstructed with the following scaffolds; animals were grouped (n = 7 per group) as follows: (a) normal rats; (b) rats implanted with three-dimensional printing (3DP) polycaprolactone (PCL) scaffolds; (c) with human adipose-derived mesenchymal stem cell (ADSC)-seeded 3DP PCL scaffolds; (d) with polyurethane (PU)-nanofiber(Nf) scaffolds; and (e) with ADSC-seeded PU-Nf scaffolds. Results The esophageal defects were successfully repaired; however, muscle regeneration was greater in the 3DP PCL + ADSC groups than in the PU-Nf + ADSC groups (P
Three-dimensional biofabrication of an aragonite-enriched self-hardening bone graft substitute and assessment of its osteogenicity in vitro and in vivo
A self-hardening three-dimensional (3D)-porous composite bone graft consisting of 65 wt% hydroxyapatite (HA) and 35 wt% aragonite was fabricated using a 3D-Bioplotter®. New tetracalcium phosphate and dicalcium phosphate anhydrous/aragonite/gelatine paste formulae were developed to overcome the phase separation of the liquid and solid components. The mechanical properties, porosity, height and width stability of the end products were optimised through a systematic analysis of the fabrication processing parameters including printing pressure, printing speed and distance between strands. The resulting 3D-printed bone graft was confirmed to be a mixture of HA and aragonite by X-ray diffraction, Fourier transform infrared spectroscopy and energy…
Influence of Geometry and Architecture on the In Vivo Success of 3D-Printed Scaffolds for Spinal Fusion
We previously developed a recombinant growth factor-free, three-dimensional (3D)-printed material comprising hydroxyapatite (HA) and demineralized bone matrix (DBM) for bone regeneration. This material has demonstrated the capacity to promote re-mineralization of the DBM particles within the scaffold struts and shows potential to promote successful spine fusion. Here, we investigate the role of geometry and architecture in osteointegration, vascularization, and facilitation of spine fusion in a preclinical model. Inks containing HA and DBM particles in a poly(lactide-co-glycolide) elastomer were 3D-printed into scaffolds with varying relative strut angles (90° vs. 45° advancing angle), macropore size (0 μm vs. 500 μm vs. 1000 μm), and strut…
3D-Printed Ceramic-Demineralized Bone Matrix Hyperelastic Bone Composite Scaffolds for Spinal Fusion
Although numerous spinal biologics are commercially available, a cost-effective and safe bone graft substitute material for spine fusion has yet to be proven. In this study, “3D-Paints” containing varying volumetric ratios of hydroxyapatite (HA) and human demineralized bone matrix (DBM) in a poly(lactide-co-glycolide) elastomer were three-dimensional (3D) printed into scaffolds to promote osteointegration in rats, with an end goal of spine fusion without the need for recombinant growth factor. Spine fusion was evaluated by manual palpation, and osteointegration and de novo bone formation within scaffold struts were evaluated by laboratory and synchrotron microcomputed tomography and histology. The 3:1 HA:DBM composite…
A novel vehicle-like drug delivery 3D printing scaffold and its applications for a rat femoral bone repairing in vitro and in vivo
The high surface area ratio and special structure of mesoporous bioactive glass (MBG) endow it with excellent physical adsorption of various drugs without destroying the chemical activity. Silicate 1393 bioactive glass (1393) is famous for its fantastic biodegradability and osteogenesis. Herein, we have built a novel vehicle-like drug delivery 3D printing scaffold with multiplexed drug delivery capacity by coating MBG on the surface of 1393 (1393@MBG). Furthermore, we have applied DEX and BMP-2 on the 1393@MBG scaffold to endow it with antibacterial and osteogenic properties. Results indicated that this 1393@MBG scaffold could effectively load and controlled release BMP-2, DNA and…
A smart scaffold composed of three-dimensional printing and electrospinning techniques and its application in rat abdominal wall defects
Background Biological composite scaffolds are increasingly being used in abdominal wall reconstruction but still have certain shortcomings. The present study describes here a novel three-dimensional (3D) scaffold fabricated by combining 3D printing (3DP) and electrospinning (ESP). Methods Biological composite scaffolds are composed of integrated 3DP interconnected macrofiber and random ESP microfiber networks. The 3DP scaffold retains intact 3D architecture and mechanical properties, while the ESP network serves as a cell entrapment system at the extracellular matrix (ECM) scale. Biological composite scaffolds are implanted in a defective rat abdominal wall to detect if it could induce early vascularization and reconstruction of…
2D MXene‐Integrated 3D‐Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction
The residual of malignant tumor cells and lack of bone‐tissue integration are the two critical concerns of bone‐tumor recurrence and surgical failure. In this work, the rational integration of 2D Ti3C2 MXene is reported with 3D‐printing bioactive glass (BG) scaffolds for achieving concurrent bone‐tumor killing by photonic hyperthermia and bone‐tissue regeneration by bioactive scaffolds. The designed composite scaffolds take the unique feature of high photothermal conversion of integrated 2D Ti3C2 MXene for inducing bone‐tumor ablation by near infrared‐triggered photothermal hyperthermia, which has achieved the complete tumor eradication on in vivo bone‐tumor xenografts. Importantly, the rational integration of 2D Ti3C2 MXene…
Mechanical and finite element evaluation of a bioprinted scaffold following recellularization in a rat subcutaneous model
Tissue engineered heart valves (TEHV) provide several advantages over currently available aortic heart valve replacements. Bioprinting provides a patient-specific means of developing a TEHV scaffold from imaging data, and the capability to embed the patient’s own cells within the scaffold. In this work we investigated the remodeling capacity of a collagen-based bio-ink by implanting bioprinted disks in a rat subcutaneous model for 2, 4 and 12 weeks and evaluating the mechanical response using biaxial testing and subsequent finite element (FE) modeling. Samples explanted after 2 and 4 weeks showed inferior mechanical properties compared to native tissues while 12 week explants…
Silicone resin derived larnite/C scaffolds via 3D printing for potential tumor therapy and bone regeneration
Three dimensional (3D) printing has been used to fabricate bioceramic scaffolds for treating the tumor-related defects in recent years, but the fabrication process and the introduction of anti-tumor agents are still challenging. In this study, porous free carbon-embedding larnite (larnite/C) scaffolds have been successfully fabricated by 3D printing of the silicone resin loaded with CaCO3 filler and high temperature treatment under an inert atmosphere. The fabricated larnite/C scaffolds had uniform interconnected macropores (ca. 400 μm), and exhibited excellent photothermal effect, which was able to kill human osteosarcoma cells (MNNG/HOS) and inhibit the tumor growth in nude mice. Moreover, the larnite/C scaffolds…
In vivo remodeling of a 3D-Bioprinted tissue engineered heart valve scaffold
Objective To evaluate the recellularization potential of a bioprinted aortic heart valve scaffold printed with highly concentrated Type I collagen hydrogel (Lifeink® 200) and MSCs. Materials and methods A suspension of rat mesenchymal stem cells (MSCs) was mixed with Lifeink® 200 and was 3D-printed into gelatin support gel to produce disk scaffolds which were subsequently implanted subcutaneously in Sprague-Dawley rats for 2, 4, 8, and 12 weeks. The biomechanical properties of the scaffolds were evaluated by uniaxial tensile testing and cell infiltration and inflammation assessed via immunohistochemistry (IHC) and histological staining. Results There was an average decrease in both UTS…
Carbon Nanodots Doped Super-paramagnetic Iron Oxide Nanoparticles for Multimodal Bioimaging and Osteochondral Tissue Regeneration via External Magnetic Actuation
Super-paramagnetic iron oxide nanoparticles (SPIONs) have multiple theranostics applications such as T2 contrast agent in magnetic resonance imaging (MRI) and electromagnetic manipulations in biomedical devices, sensors, and regenerative medicines. However, SPIONs suffer from the limitation of free radical generation, and this has a certain limitation in its applicability in tissue imaging and regeneration applications. In the current study, we developed a simple hydrothermal method to prepare carbon quantum dots (CD) doped SPIONs (FeCD) from easily available precursors. The nanoparticles are observed to be cytocompatible, hemocompatible, and capable of scavenging free radicals in vitro. They also have been observed to be…
Effect of Dexamethasone on Room Temperature Three-Dimensional Printing, Rheology, and Degradation of a Low Modulus Polyester for Soft Tissue Engineering
Three-dimensional (3D) printing has enabled benchtop fabrication of customized bioengineered constructs with intricate architectures. Various approaches are being explored to enable optimum integration of such constructs into the physiological environment including addition of bioactive fillers. In this work, we incorporated a corticosteroid drug, dexamethasone (Dex), in a low modulus polyester (SC5050) and examined the effect of Dex incorporation on solvent-, initiator-, and monomer-free pneumatic extrusion-based 3D printing of the polymer. Dex–SC5050 interactions were characterized by plotting thermodynamic binary phase diagrams based on the Flory–Huggins theory. The effect of Dex composition on the 3D printability of the SC5050 polyester was examined…
Doping of Carbon Quantum Dots (CDs) in Calcium Phosphate Nanorods for Inducing Ectopic Chondrogenesis via Activation of the HIF-α/SOX‑9 Pathway
Calcium phosphate (CaPs)-based nanostructures are mostly known to induce osteogenic differentiation of mesenchymal stem cells (MSCs). However, in the current study, doping of carbon quantum dots into calcium phosphate nanorods (C-CaPs) has been observed to affect the differentiation pathway and enhanced the expression of chondrogenic genes instead of osteogenic ones. Here, we report a microwave-assisted single-step synthesis and doping of carbon dot into calcium phosphate nanorods and their ectopic chondrogenicity in a rodent subcutaneous model. High-resolution transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy studies show that the doping of carbon dots results in p-type semiconductor-like structure formation…
A Bioprinted Cardiac Patch Composed of Cardiac-Specific Extracellular Matrix and Progenitor Cells for Heart Repair
Congenital heart defects are present in 8 of 1000 newborns and palliative surgical therapy has increased survival. Despite improved outcomes, many children develop reduced cardiac function and heart failure requiring transplantation. Human cardiac progenitor cell (hCPC) therapy has potential to repair the pediatric myocardium through release of reparative factors, but therapy suffers from limited hCPC retention and functionality. Decellularized cardiac extracellular matrix hydrogel (cECM) improves heart function in animals, and human trials are ongoing. In the present study, a 3D‐bioprinted patch containing cECM for delivery of pediatric hCPCs is developed. Cardiac patches are printed with bioinks composed of cECM, hCPCs,…
Tyrosinase-doped bioink for 3D bioprinting of living skin constructs
Three-dimensional bioprinting is an emerging technology for fabricating living 3D constructs, and it has shown great promise in tissue engineering. Bioinks are scaffold materials mixed with cells used by 3D bioprinting to form a required cell-laden structure. In this paper, a novel bioink made of gelatin methacrylamide (GelMA) and collagen (Col) doped with tyrosinase (Ty) is presented for the 3D bioprinting of living skin tissues. Ty has the dual function of being an essential bioactive compound in the skin regeneration process and also as an enzyme to facilitate the crosslink of Col and GelMA. Further, enzyme crosslinking together with photocrosslinking…
3D Printing Nanoscale Bioactive Glass Scaffolds Enhance Osteoblast Migration and Extramembranous Osteogenesis through Stimulating Immunomodulation
Bioactive glass (BG) can repair bone defects, however, it is not clear whether BG has the ability for bone augmentation without making any bone defect. Unlike the intramembranous osteogenesis in bone defect repair, the extramembranous osteogenesis occurs outside the cortical bone and the osteoprogenitor cells show the reversed migration. Herein, nanoscale bioactive glass scaffolds (BGSs) are fabricated, and their role and immunomodulation‐related mechanism in the extramembranous osteogenesis are investigated. The in vitro migration and differentiation of calvaria preosteoblasts are studied by culturing with peripheral macrophage‐conditioned medium after stimulating with BGSs. The results indicate that the proinflammatory environment significantly promotes preosteoblast…
A novel surgical technique for a rat subcutaneous implantation of a tissue engineered scaffold
Objectives Subcutaneous implantations in small animal models are currently required for preclinical studies of acellular tissue to evaluate biocompatibility, including host recellularization and immunogenic reactivity. Methods Three rat subcutaneous implantation methods were evaluated in six Sprague Dawley rats. An acellular xenograft made from porcine pericardium was used as the tissue-scaffold. Three implantation methods were performed; 1) Suture method is where a tissue-scaffold was implanted by suturing its border to the external oblique muscle, 2) Control method is where a tissue-scaffold was implanted without any suturing or support, 3) Frame method is where a tissue-scaffold was attached to a circular frame…
Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration
Three-dimensional printing is one of the most promising techniques for the manufacturing of scaffolds for bone tissue engineering. However, a pure scaffold is limited by its biological properties. Platelet-rich plasma (PRP) has been shown to have the potential to improve the osteogenic effect. In this study, we improved the biological properties of scaffolds by coating 3D-printed polycaprolactone (PCL) scaffolds with freeze-dried and traditionally prepared PRP, and we evaluated these scaffolds through in vitro and in vivo experiments. In vitro, we evaluated the interaction between dental pulp stem cells (DPSCs) and the scaffolds by measuring cell proliferation, alkaline phosphatase (ALP) activity,…
Bioprinting pattern-dependent electrical/mechanical behavior of cardiac alginate implants: characterization and ex-vivo phase-contrast microtomography assessment
Three-dimensional (3D)-bioprinting techniques may be used to modulate electrical/mechanical properties and porosity of hydrogel constructs for fabrication of suitable cardiac implants. Notably, characterization of these properties after implantation remains a challenge, raising the need for the development of novel quantitative imaging techniques for monitoring hydrogel implant behavior in-situ. This study aims to (i) assess the influence of hydrogel bioprinting patterns on electrical/mechanical behavior of cardiac implants based on a 3D-printing technique and (ii) investigate the potential of synchrotron X-ray phase contrast computed tomography (PCI-CT) for estimating elastic modulus/impedance/porosity and microstructural features of 3D-printed cardiac implants in-situ via an ex-vivo study.…
Potential of propagation-based synchrotron X-ray phase-contrast computed tomography for cardiac tissue engineering
Hydrogel-based cardiac tissue engineering offers great promise for myocardial infarction repair. The ability to visualize engineered systems in vivo in animal models is desired to monitor the performance of cardiac constructs. However, due to the low density and weak X-ray attenuation of hydrogels, conventional radiography and micro-computed tomography are unable to visualize the hydrogel cardiac constructs upon their implantation, thus limiting their use in animal systems. This paper presents a study on the optimization of synchrotron X-ray propagation-based phase-contrast imaging computed tomography (PCI-CT) for three-dimensional (3D) visualization and assessment of the hydrogel cardiac patches. First, alginate hydrogel was 3D-printed into…
Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo
In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were successfully fabricated using a 3D printing technique, which had a regular and uniform square macroporous structure, high porosity and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on scaffolds to evaluate hBMSC attachment, proliferation and osteogenesis-related gene expression. Critical-sized rat calvarial defects were applied to investigate the…
Hyperelastic “bone”: A highly versatile, growth factor–free, osteoregenerative, scalable, and surgically friendly biomaterial
Despite substantial attention given to the development of osteoregenerative biomaterials, severe deficiencies remain in current products. These limitations include an inability to adequately, rapidly, and reproducibly regenerate new bone; high costs and limited manufacturing capacity; and lack of surgical ease of handling. To address these shortcomings, we generated a new, synthetic osteoregenerative biomaterial, hyperelastic “bone” (HB). HB, which is composed of 90 weight % (wt %) hydroxyapatite and 10 wt % polycaprolactone or poly(lactic-co-glycolic acid), could be rapidly three-dimensionally (3D) printed (up to 275 cm3/hour) from room temperature extruded liquid inks. The resulting 3D-printed HB exhibited elastic mechanical properties (~32…
Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration
Bone defects, particularly large bone defects resulting from infections, trauma, surgical resection or genetic malformations, maintain a significant challenge for clinicians. In this study, the tricalcium silicate/mesoporous bioactive glass (C3S/MBG) cement scaffolds were successfully fabricated for the first time by 3D printing with a curing process, which combined the hydraulicity of C3S with the excellent biological property of MBG together. The C3S/MBG scaffolds exhibited 3D interconnected macropores (~400μm), high porosity (~70%), enhanced mechanical strength (>12MPa) and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on the scaffolds to evaluate their cell responses, and the results…
A new printable and durable N,O-carboxymethyl chitosan–Ca2+–polyphosphate complex with morphogenetic activity
Biomimetic materials have been gaining increasing importance in tissue engineering since they may provide regenerative alternatives to the use of autologous tissues for transplantation. In the present study, we applied for bioprinting of a functionalized three-dimensional template, N,O-carboxymethyl chitosan (N,O-CMC), mimicking the physiological extracellular matrix. This polymer, widely used in tissue engineering, has been provided with functional activity by integration of polyphosphate (polyP), an osteogenically acting natural polymer. The two polymers, N,O-CMC and polyP, are linked together via Ca2+ bridges. This N,O-CMC + polyP material was proven to be printable and durable. The N,O-CMC + polyP printed layers and tissue…
Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects
The development of a new generation of biomaterials with high osteogenic ability for fast osseointegration with host bone is being intensively investigated. In this study, we have fabricated three-dimensional (3-D) strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds by a 3-D printing technique. Sr-MBG scaffolds showed uniform interconnected macropores (∼400 μm), high porosity (∼70%) and enhanced compressive strength (8.67 ± 1.74 MPa). Using MBG scaffolds as a control, the biological properties of Sr-MBG scaffolds were evaluated by apatite-forming ability, adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteoblast-like cells MC3T3-E1. Furthermore, Sr-MBG scaffolds were used to repair critical-sized rat calvarial…
3D-printed dimethyloxallyl glycine delivery scaffolds to improve angiogenesis and osteogenesis
Angiogenesis–osteogenesis coupling processes are vital in bone tissue engineering. Normal biomaterials implanted in bone defects have issues in the sufficient formation of blood vessels, especially in the central part. Single delivery of vascular endothelial growth factors (VEGF) to foci in previous studies did not show satisfactory results due to low loading doses, a short protein half-life and low efficiency. Development of a hypoxia-mimicking microenvironment for cells by local prolyl-4-hydroxylase inhibitor release, which can stabilize hypoxia-inducible factor 1α (HIF-1α) expression, is an alternative method. The aim of this study was to design a dimethyloxallyl glycine (DMOG) delivering scaffold composed of mesoporous…
Physiologic load-bearing characteristics of autografts, allografts, and polymer-based scaffolds in a critical sized segmental defect of long bone: an experimental study
Background To address the challenge of treating critical sized intercalary defects, we hypothesized that under physiologic cyclic loading, autografts, allografts, and scaffolds loaded with and without human mesenchymal stem cells (hMSCs) would have different biomechanical characteristics. Methods Using a rat femoral defect model, 46 rats were assigned to four groups, ie, autograft (n = 12), allograft (n = 10), scaffold (n = 13), and scaffold with hMSCs (n = 11). The scaffold groups used a 5 mm segment of scaffold composed of 80% poly-ε-caprolactone and 20% hydroxyapatite. Rats were sacrificed 4 months postoperatively, and the repairs were assessed radiographically and…
Benefits of Spine Stabilization with Biodegradable Scaffolds in Spinal Cord Injured Rats
Spine stabilization upon spinal cord injury (SCI) is a standard procedure in clinical practice, but rarely employed in experimental models. Moreover, the application of biodegradable biomaterials for this would come as an advantage as it would eliminate the presence of a nondegradable prosthesis within the vertebral bone. Therefore, in the present work, we propose the use of a new biodegradable device specifically developed for spine stabilization in a rat model of SCI. A 3D scaffold based on a blend of starch with polycaprolactone was implanted, replacing delaminated vertebra, in male Wistar rats with a T8-T9 spinal hemisection. The impact of…
An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects
The hypothesis of this study was that the extent of bone regeneration could be enhanced by using scaffolds with appropriate geometry, and that such an effect could be further increased by mimicking the natural timing of appearance of bone morphogenetic proteins BMP-2 and BMP-7 after fracture. Bioplotted poly(ε-caprolactone) (PCL) disks with four different fibre organizations were used to study the effect of 3D scaffold architecture on the healing of bone defects in a rat pelvis model. Moreover, one PCL construct was further modified by introducing a nanoparticulate sequential BMP-2/BMP-7 delivery system into this scaffold. Scaffolds and functionalized construct along with…
Development and Characterization of a Novel Hybrid Tissue Engineering-Based Scaffold for Spinal Cord Injury Repair
Spinal cord injury (SCI) represents a significant health and social problem, and therefore it is vital to develop novel strategies that can specifically target it. In this context, the objective of the present work was to develop a new range of three-dimensional (3D) tubular structures aimed at inducing the regeneration within SCI sites. Up to six different 3D tubular structures were initially developed by rapid prototyping: 3D bioplotting–based on a biodegradable blend of starch. These structures were then further complemented by injecting Gellan Gum, a polysaccharide-based hydrogel, in the central area of structures. The mechanical properties of these structures were…
Anatomically shaped tooth and periodontal regeneration by cell homing
Tooth regeneration by cell delivery encounters translational hurdles. We hypothesized that anatomically correct teeth can regenerate in scaffolds without cell transplantation. Novel, anatomically shaped human molar scaffolds and rat incisor scaffolds were fabricated by 3D bioprinting from a hybrid of poly-ε-caprolactone and hydroxyapatite with 200-µm-diameter interconnecting microchannels. In each of 22 rats, an incisor scaffold was implanted orthotopically following mandibular incisor extraction, whereas a human molar scaffold was implanted ectopically into the dorsum. Stromal-derived factor-1 (SDF1) and bone morphogenetic protein-7 (BMP7) were delivered in scaffold microchannels. After 9 weeks, a putative periodontal ligament and new bone regenerated at the interface…
Tissue Formation and Vascularization in Anatomically Shaped Human Joint Condyle Ectopically in Vivo
Scale-up of bioengineered grafts toward clinical applications is a challenge in regenerative medicine. Here, we report tissue formation and vascularization of anatomically shaped human tibial condyles ectopically with a dimension of 20 × 15 × 15 mm3. A composite of poly-ɛ-caprolactone and hydroxyapatite was fabricated using layer deposition of three-dimensional interlaid strands with interconnecting microchannels (400 μm) and seeded with human bone marrow stem cells (hMSCs) with or without osteogenic differentiation. An overlaying layer (1 mm deep) of poly(ethylene glycol)-based hydrogel encapsulating hMSCs or hMSC-derived chondrocytes was molded into anatomic shape and anchored into microchannels by gel infusion. After 6 weeks of subcutaneous implantation in athymic rats,…