3D Bioplotter Research Papers

Displaying all papers about Cell Printing (120 results)

Optimization of Biomanufacturing process for Tissue Engineering applications

University of Brescia 2024 Thesis
R. Rovetta

In recent years, tissue engineering has experienced significant advancements, mostly driven by the emergence of additive manufacturing technologies and the integration of biomaterials and cells. This advanced technique enables the creation of intricate structures with diverse components and properties, specifically designed for use in biomedical applications. The primary benefit of this technology is its ability to be customised, which helps minimise post-operative difficulties for patients with orthopaedic diseases and those undergoing tissue transplants. For this purpose, the essential components can be synthesised by the patient’s own cells. However, there are still other obstacles that need to be addressed in order…

Synthesis of Alginate/Collagen Bioink for Bioprinting Respiratory Tissue Models

Journal of Functional Biomaterials 2024 Volume 15, Issue 4, Article 90

Synthesis of bioinks for bioprinting of respiratory tissue requires considerations related to immunogenicity, mechanical properties, printability, and cellular compatibility. Biomaterials can be tailored to provide the appropriate combination of these properties through the synergy of materials with individual pros and cons. Sodium alginate, a water-soluble polymer derived from seaweed, is a cheap yet printable biomaterial with good structural properties; however, it lacks physiological relevance and cell binding sites. Collagen, a common component in the extra cellular matrix of many tissues, is expensive and lacks printability; however, it is highly biocompatible and exhibits sites for cellular binding. This paper presents our…

Extrusion bioprinting of elastin-containing bioactive double-network tough hydrogels for complex elastic tissue regeneration

Aggregate 2024 Volume 5, Issue 3, Article e477

Despite recent advances in extrusion bioprinting of cell-laden hydrogels, using naturally derived bioinks to biofabricate complex elastic tissues with both satisfying biological functionalities and superior mechanical properties is hitherto an unmet challenge. Here, we address this challenge with precisely designed biological tough hydrogel bioinks featuring a double-network structure. The tough hydrogels consisted of energy-dissipative dynamically crosslinked glycosaminoglycan hyaluronic acid (o-nitrobenzyl-grafted hyaluronic acid) and elastin through Schiff’s base reaction, and free-radically polymerized gelatin methacryloyl. The incorporation of elastin further improved the elasticity, stretchability (∼170% strain), and toughness (∼45 kJ m−3) of the hydrogels due to the random coiling structure. We used this novel…

Cucurbit[8]uril Mediated Supramolecular and Photocrosslinked Interpenetrating Network Hydrogel Matrices for 3D-Bioprinting

Advanced Materials 2024 Volume 36, Issue 26, Article 2313270

Printing of biologically functional constructs is significant for applications in tissue engineering and regenerative medicine. Designing bioinks remains remarkably challenging due to the multifaceted requirements in terms of the physical, chemical, and biochemical properties of the three-dimensional matrix, such as cytocompatibility, printability, and shape fidelity. In order to promote matrix and materials stiffness, while not sacrificing stress relaxation mechanisms which support cell spreading, migration, and differentiation, this work reports an interpenetrating network (IPN) bioink design. The approach makes use of a chemically defined network, combining physical and chemical crosslinking units with a tunable composition and network density, as well as…

Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering

ACS Applied Materials & Interfaces 2024 Volume 16, Issue 13, Pages 15761–15772

Utilizing tissue-specific extracellular matrices (ECMs) is vital for replicating the composition of native tissues and developing biologically relevant biomaterials. Human- or animal-derived donor tissues and organs are the current gold standard for the source of these ECMs. To overcome the several limitations related to these ECM sources, including the highly limited availability of donor tissues, cell-derived ECM offers an alternative approach for engineering tissue-specific biomaterials, such as bioinks for three-dimensional (3D) bioprinting. 3D bioprinting is a state-of-the-art biofabrication technology that addresses the global need for donor tissues and organs. In fact, there is a vast global demand for human donor…

3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells

Biomacromolecules 2024 Volume 25, Issue 6, Pages 3312–3324

3D-printed hydrogel scaffolds biomimicking the extracellular matrix (ECM) are key in cartilage tissue engineering as they can enhance the chondrogenic differentiation of mesenchymal stem cells (MSCs) through the presence of active nanoparticles such as graphene oxide (GO). Here, biomimetic hydrogels were developed by cross-linking alginate, gelatin, and chondroitin sulfate biopolymers in the presence of GO as a bioactive filler, with excellent processability for developing bioactive 3D printed scaffolds and for the bioprinting process. A novel bioink based on our hydrogel with embedded human MSCs presented a cell survival rate near 100% after the 3D bioprinting process. The effects of processing…

3D bioprinting of thermosensitive inks based on gelatin, hyaluronic acid, and fibrinogen: reproducibility and role of printing parameters

Bioprinting 2024 Volume 39, Article e00338

Thermosensitive inks are considered an attractive option for the 3D bioprinting of different tissue types, yet comprehensive information on their reliability, preparation, and properties remains lacking. This paper addresses this gap by presenting a twofold aim: firstly, characterizing the preparation, rheology, and printing aspects of two inks that have demonstrated success in skeletal muscle tissue engineering both in vitro and in vivo. The first ink is composed of fibrinogen, gelatin, hyaluronic acid, and glycerol, while the second is a sacrificial ink made of gelatin, hyaluronic acid, and glycerol. Secondly, from this analysis, we demonstrate how thermosensitive and multicomponent inks can…

Spatial Growth Factor Delivery for 3D Bioprinting of Vascularized Bone with Adipose-Derived Stem/Stromal Cells as a Single Cell Source

ACS Biomaterials Science & Engineering 2024 Volume 10, Issue 3, Pages 1607-1619

Encapsulating multiple growth factors within a scaffold enhances the regenerative capacity of engineered bone grafts through their localization and controls the spatiotemporal release profile. In this study, we bioprinted hybrid bone grafts with an inherent built-in controlled growth factor delivery system, which would contribute to vascularized bone formation using a single stem cell source, human adipose-derived stem/stromal cells (ASCs) in vitro. The strategy was to provide precise control over the ASC-derived osteogenesis and angiogenesis at certain regions of the graft through the activity of spatially positioned microencapsulated BMP-2 and VEGF within the osteogenic and angiogenic bioink during bioprinting. The 3D-bioprinted…

Magnetically Actuated GelMA-Based Scaffolds as a Strategy to Generate Complex Bioprinted Tissues

Advanced Materials Technologies 2024 Article 2400119

The 3D bioprinting of complex structures has attracted particular attention in recent years and has been explored in several fields, including dentistry, pharmaceutical technology, medical devices, and tissue/organ engineering. However, it still possesses major challenges, such as decreased cell viability due to the prolongation of the printing time, along with difficulties in preserving the print shape. The 4D bioprinting approach, which is based on controlled shape transformation upon stimulation after 3D bioprinting, is a promising innovative method to overcome these difficulties. Herein, the generation of skeletal muscle tissue-like complex structures is demonstrated by 3D bioprinting of GelMA-based C2C12 mouse myoblast-laden…

Tuning thermoresponsive properties of carboxymethyl cellulose (CMC)–agarose composite bioinks to fabricate complex 3D constructs for regenerative medicine

International Journal of Biological Macromolecules 2024 Volume 260, Part 1, Article 129443

3D bioprinting has emerged as a viable tool to fabricate 3D tissue constructs with high precision using various bioinks which offer instantaneous gelation, shape fidelity, and cytocompatibility. Among various bioinks, cellulose is the most abundantly available natural polymer & widely used as bioink for 3D bioprinting applications. To mitigate the demanding crosslinking needs of cellulose, it is frequently chemically modified or blended with other polymers to develop stable hydrogels. In this study, we have developed a thermoresponsive, composite bioink using carboxymethyl cellulose (CMC) and agarose in different ratios (9:1, 8:2, 7:3, 6:4, and 5:5). Among the tested combinations, the 5:5…

3D bioprinted mesenchymal stem cell laden scaffold enhances subcutaneous vascularization for delivery of cell therapy

Biomedical Microdevices 2024 Volume 26, Issue 3, Article 29

Subcutaneous delivery of cell therapy is an appealing minimally-invasive strategy for the treatment of various diseases. However, the subdermal site is poorly vascularized making it inadequate for supporting engraftment, viability, and function of exogenous cells. In this study, we developed a 3D bioprinted scaffold composed of alginate/gelatin (Alg/Gel) embedded with mesenchymal stem cells (MSCs) to enhance vascularization and tissue ingrowth in a subcutaneous microenvironment. We identified bio-ink crosslinking conditions that optimally recapitulated the mechanical properties of subcutaneous tissue. We achieved controlled degradation of the Alg/Gel scaffold synchronous with host tissue ingrowth and remodeling. Further, in a rat model, the Alg/Gel…

Bioprinted scaffolds assembled as synthetic skin grafts by natural hydrogels containing fibroblasts and bioactive agents

International Journal of Polymeric Materials and Polymeric Biomaterials 2024 Volume 73, Issue 11, Pages 927–945

Hydrogel skin grafts provide a moist environment and act as a regenerative template to the newly formed tissue. In this study, we developed 3D-bio-printed hydrogels using methacrylated pectin and methacrylated gelatin together with an antibacterial agent (curcumin), a bioactive agent (Vitamin-C) and fibroblast cells. Curcumin release was almost 10 times higher at pH 7.4 than pH 5.0, and it demonstrated antimicrobial affinity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The developed 3D-bio-printed hydrogels containing cells and bioactive agents demonstrated high cell viability, cell proliferation, and collagen production, and are promising skin graft candidates for the treatment of full-thickness problematic…

Dynamic Alginate Hydrogel as an Antioxidative Bioink for Bioprinting

Gels 2023 Volume 9, Issue 4, Article 312

3D bioprinting holds great potential for use in tissue engineering to treat degenerative joint disorders, such as osteoarthritis. However, there is a lack of multifunctional bioinks that can not only support cell growth and differentiation, but also offer protection to cells against injuries caused by the elevated oxidative stress; this conditions is a common characteristic of the microenvironment of the osteoarthritis disease. To mitigate oxidative stress-induced cellular phenotype change and malfunction, an anti-oxidative bioink derived from an alginate dynamic hydrogel was developed in this study. The alginate dynamic hydrogel gelated quickly via the dynamic covalent bond between the phenylboronic acid…

Customization of an Ultrafast Thiol–Norbornene Photo-Cross-Linkable Hyaluronic Acid–Gelatin Bioink for Extrusion-Based 3D Bioprinting

Biomacromolecules 2023 Volume 24, Issue 11, Pages 5414-5427

Light-based three-dimensional (3D) bioprinting has been widely studied in tissue engineering. Despite the fact that free-radical chain polymerization-based bioinks like hyaluronic acid methacrylate (HAMA) and gelatin methacryloyl (GelMA) have been extensively explored in 3D bioprinting, the thiol–ene hydrogel system has attracted increasing attention for its ability in building hydrogel scaffolds in an oxygen-tolerant and cell-friendly way. Herein, we report a superfast curing thiol–ene bioink composed of norbornene-modified hyaluronic acid (NorHA) and thiolated gelatin (GelSH) for 3D bioprinting. A new facile approach was first introduced in the synthesis of NorHA, which circumvented the cumbersome steps involved in previous works. Additionally, after…

3D bioprinting of in vitro porous hepatoma models: establishment, evaluation, and anticancer drug testing

Bio-Design and Manufacturing 2024 Volume 7, Pages 137-152

Traditional tumor models do not tend to accurately simulate tumor growth in vitro or enable personalized treatment and are particularly unable to discover more beneficial targeted drugs. To address this, this study describes the use of three-dimensional (3D) bioprinting technology to construct a 3D model with human hepatocarcinoma SMMC-7721 cells (3DP-7721) by combining gelatin methacrylate (GelMA) and poly(ethylene oxide) (PEO) as two immiscible aqueous phases to form a bioink and innovatively applying fluorescent carbon quantum dots for long-term tracking of cells. The GelMA (10%, mass fraction) and PEO (1.6%, mass fraction) hydrogel with 3:1 volume ratio offered distinct pore-forming characteristics,…

3D Bioprinting Using Synovium-Derived MSC-Laden Photo-Cross-Linked ECM Bioink for Cartilage Regeneration

ACS Applied Materials & Interfaces 2023 Volume 15, Issue 7, Pages 8895-8913

In this study, inspired by the components of cartilage matrix, a photo-cross-linked extracellular matrix (ECM) bioink composed of modified proteins and polysaccharides was presented, including gelatin methacrylate, hyaluronic acid methacrylate, and chondroitin sulfate methacrylate. The systematic experiments were performed, including morphology, swelling, degradation, mechanical and rheological tests, printability analysis, biocompatibility and chondrogenic differentiation characterization, and RNA sequencing (RNA-seq). The results indicated that the photo-cross-linked ECM hydrogels possessed suitable degradation rate and excellent mechanical properties, and the three-dimensional (3D) bioprinted ECM scaffolds obtained favorable shape fidelity and improved the basic properties, biological properties, and chondrogenesis of synovium-derived MSCs (SMSCs). The strong…

Functionalized gelatin-alginate based bioink with enhanced manufacturability and biomimicry for accelerating wound healing

International Journal of Biological Macromolecules 2023 Volume 240, Article 124364

Three-dimensional (3D) bioprinting is a promising technique to construct heterogeneous architectures that mimic cell microenvironment. However, the current bioinks for 3D bioprinting usually show some limitations, such as low printing accuracy, unsatisfactory mechanical properties and compromised cytocompatibility. Herein, a novel bioink comprising hydroxyphenyl propionic acid-conjugated gelatin and tyramine-modified alginate is developed for printing 3D constructs. The bioink takes advantage of an ionic/covalent intertwined network that combines covalent bonds formed by photo-mediated redox reaction and ionic bonds formed by chelate effect. Benefiting from the thermosensitivity of gelatin and the double-crosslinking mechanism, the developed bioink shows controllable rheological behaviors, enhanced mechanical behavior,…

Stepwise Multi-Cross-Linking Bioink for 3D Embedded Bioprinting to Promote Full-Thickness Wound Healing

ACS Applied Materials & Interfaces 2023 Volume 15, Issue 20, Pages 24034–24046

The emergence and innovation of three-dimensional (3D) bioprinting provide new development opportunities for tissue engineering and regenerative medicine. However, how to obtain bioinks with both biomimicry and manufacturability remains a great issue in 3D bioprinting. Developing intelligent responsive biomaterials is conducive to break through the current dilemma. Herein, a stepwise multi-cross-linking strategy concerning thermosensitive thiolated Pluronic F127 (PF127-SH) and hyaluronic acid methacrylate (HAMA) is proposed to achieve temperature-controlled 3D embedded bioprinting, specifically pre-cross-linking (Michael addition reaction) at low temperatures (4–20 °C) and subsequently self-assembly (hydrophobic interaction) in a high-temperature (30–37 °C) suspension bath as well as final photo-cross-linking (mainly thiol-ene…

A modular hydrogel bioink containing microsphere-embedded chondrocytes for 3D-printed multiscale composite scaffolds for cartilage repair

iScience 2023 Volume 26, Issue 8, Article 107349,

Articular cartilage tissue engineering is being considered an alternative treatment strategy for promoting cartilage damage repair. Herein, we proposed a modular hydrogel-based bioink containing microsphere-embedded chondrocytes for 3D printing multiscale scaffolds integrating the micro and macro environment of the native articular cartilage. Gelatin methacryloyl (GelMA)/alginate microsphere was prepared by a microfluidic approach, and the chondrocytes embedded in the microspheres remained viable after being frozen and resuscitated. The modular hydrogel bioink could be printed via the gel-in-gel 3D bioprinting strategy for fabricating the multiscale hydrogel-based scaffolds. Meanwhile, the cells cultured in the scaffolds showed good proliferation and differentiation. Furthermore, we also found that…

Engineered biomechanical microenvironment of articular chondrocytes based on heterogeneous GelMA hydrogel composites and dynamic mechanical compression

Biomaterials Advances 2023 Volume 153, Article 213567

Tissue-engineered articular cartilage constructs are currently not able to equal native tissues in terms of mechanical and biological properties. A major cause lies in the deficiency in engineering the biomechanical microenvironment (BMME) of articular chondrocytes. In this work, to engineer the BMME of articular chondrocytes, heterogeneous hydrogel structures of gelatin methacrylated (GelMA) containing differential-stiffness domains were first fabricated, and then periodic dynamic mechanical stimulations were applied to the hydrogel structures. The chondrocyte phenotype of ATDC5 cells was enhanced as the spatial differentiation in stiffness was increased in the hydrogel structures and was further strengthened by dynamic mechanical stimulation. It was…

Embedded Bioprinting of Breast Tumor Cells and Organoids Using Low-Concentration Collagen-Based Bioinks

Advanced Healthcare Materials 2023 Volume 12, Issue 26, Article 2300905

Bioinks for 3D bioprinting of tumor models should not only meet printability requirements but also accurately maintain and support phenotypes of tumor surrounding cells to recapitulate key tumor hallmarks. Collagen is a major extracellular matrix protein for solid tumors, but low viscosity of collagen solution has made 3D bioprinted cancer models challenging. This work produces embedded, bioprinted breast cancer cells and tumor organoid models using low-concentration collagen I based bioinks. The biocompatible and physically crosslinked silk fibroin hydrogel is used to generate the support bath for the embedded 3D printing. The composition of the collagen I based bioink is optimized…

Silk fibroin, gelatin, and human placenta extracellular matrix-based composite hydrogels for 3D bioprinting and soft tissue engineering

Biomaterials Research 2023 Volume 27, Article 117

Background There is a great clinical need and it remains a challenge to develop artificial soft tissue constructs that can mimic the biomechanical properties and bioactivity of natural tissue. This is partly due to the lack of suitable biomaterials. Hydrogels made from human placenta offer high bioactivity and represent a potential solution to create animal-free 3D bioprinting systems that are both sustainable and acceptable, as placenta is widely considered medical waste. A combination with silk and gelatin polymers can bridge the biomechanical limitations of human placenta chorion extracellular matrix hydrogels (hpcECM) while maintaining their excellent bioactivity.   Method In this…

Reinforcement of Hydrogels with a 3D-Printed Polycaprolactone (PCL) Structure Enhances Cell Numbers and Cartilage ECM Production under Compression

Journal of Functional Biomaterials 2023 Volume 14, Issue 6, Article 313

Hydrogels show promise in cartilage tissue engineering (CTE) by supporting chondrocytes and maintaining their phenotype and extracellular matrix (ECM) production. Under prolonged mechanical forces, however, hydrogels can be structurally unstable, leading to cell and ECM loss. Furthermore, long periods of mechanical loading might alter the production of cartilage ECM molecules, including glycosaminoglycans (GAGs) and collagen type 2 (Col2), specifically with the negative effect of stimulating fibrocartilage, typified by collagen type 1 (Col1) secretion. Reinforcing hydrogels with 3D-printed Polycaprolactone (PCL) structures offer a solution to enhance the structural integrity and mechanical response of impregnated chondrocytes. This study aimed to assess the…

The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs

Acta Biomaterialia 2023 Volume 156, Pages 190-201

Three Dimensional (3D) bioprinting is one of the most recent additive manufacturing technologies and enables the direct incorporation of cells within a highly porous 3D-bioprinted construct. While the field has mainly focused on developing methods for enhancing printing resolution and shape fidelity, little is understood about the biological impact of bioprinting on cells. To address this shortcoming, this study investigated the in vitro and in vivo response of human osteoblasts subsequent to bioprinting using gelatin methacryloyl (GelMA) as the hydrogel precursor. First, bioprinted and two-dimensional (2D) cultured osteoblasts were compared, demonstrating that the 3D microenvironment from bioprinting enhanced bone-related gene…

BC enhanced photocurable hydrogel based on 3D bioprinting for nasal cartilage repair

International Journal of Polymeric Materials and Polymeric Biomaterials 2023 Volume 72, Issue 9, Pages 702-713

The repair of nasal cartilage lesions and defects is still a difficult problem in nasal surgery, and nasal cartilage tissue engineering will be an effective way to solve this problem. Hydrogel has excellent application potential in tissue engineering. In order to produce a 3D printable scaffold for cartilage regeneration, we prepared gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA)/bacterial cellulose (BC) composite hydrogel. The composite hydrogel was characterized by swelling, mechanical properties, and printing performance test. Compared with GelMA/HAMA hydrogel, the addition of BC not only significantly enhanced the mechanical properties of the hydrogels, but also improved the printing fidelity. At the…

Formulation of Dermal Tissue Matrix Bioink by a Facile Decellularization Method and Process Optimization for 3D Bioprinting toward Translation Research

Macromolecular Bioscience 2022 Volume 22, Issue 8, Article 2200109

Decellularized extracellular matrices (ECMs) are being extensively used for tissue engineering purposes and detergents are predominantly used for this. A facile detergent-free decellularization method is developed for dermal matrix and compared it with the most used detergent-based decellularization methods. An optimized, single-step, cost-effective Hypotonic/Hypertonic (H/H) Sodium Chloride (NaCl) solutions-based method is employed to decellularize goat skin that resulted in much higher yield than other methods. The ECM composition, mechanical property, and cytocompatibility are evaluated and compared with other decellularization methods. Furthermore, this H/H-treated decellularized dermal ECM (ddECM) exhibits a residual DNA content of <50 ng mg−1 of dry tissue. Moreover, 85.64 ± 3.01% of glycosaminoglycans…

3D bioactive ionic liquid-based architectures: An anti-inflammatory approach for early-stage osteoarthritis

Acta Biomaterialia 2024 Volume 173, Pages 298-313

3D bioprinting enables the fabrication of biomimetic cell-laden constructs for cartilage regeneration, offering exclusive strategies for precise pharmacological screenings in osteoarthritis (OA). Synovial inflammation plays a crucial role in OA’s early stage and progression, characterized by the increased of the synovial pro-inflammatory mediators and cytokines and chondrocyte apoptosis. Therefore, there is an urgent need to develop solutions for effectively managing the primary events associated with OA. To address these issues, a phenolic-based biocompatible ionic liquid approach, combining alginate (ALG), acemannan (ACE), and cholinium caffeate (Ch[Caffeate]), was used to produce easily printable bioinks. Through the use of this strategy 3D constructs…

Novel bioprinted 3D model to human fibrosis investigation

Biomedicine & Pharmacotherapy 2023 Volume 165, Article 115146

Fibrosis is shared in multiple diseases with progressive tissue stiffening, organ failure and limited therapeutic options. This unmet need is also due to the lack of adequate pre-clinical models to mimic fibrosis and to be challenged novel by anti-fibrotic therapeutic venues. Here using bioprinting, we designed a novel 3D model where normal human healthy fibroblasts have been encapsulated in type I collagen. After stimulation by Transforming Growth factor beta (TGFβ), embedded cells differentiated into myofibroblasts and enhanced the contractile activity, as confirmed by the high level of α − smooth muscle actin (αSMA) and F-actin expression. As functional assays, SEM…

Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation

Biofabrication 2023 Volume 15, Number 1, Article 015020

Corneal transplantation remains gold standard for the treatment of severe cornea diseases, however, scarcity of donor cornea is a serious bottleneck. 3D bioprinting holds tremendous potential for cornea tissue engineering (TE). One of the key technological challenges is to design bioink compositions with ideal printability and cytocompatibility. Photo-crosslinking and ionic crosslinking are often used for the stabilization of 3D bioprinted structures, which can possess limitations on biological functionality of the printed cells. Here, we developed a hyaluronic acid-based dopamine containing bioink using hydrazone crosslinking chemistry for the 3D bioprinting of corneal equivalents. First, the shear thinning property, viscosity, and mechanical…

Bioprinting of alginate-carboxymethyl chitosan scaffolds for enamel tissue engineering in vitro

Biofabrication 2023 Volume 15, Issue 1, Article 015022

Tissue engineering offers a great potential in regenerative dentistry and to this end, three dimensional (3D) bioprinting has been emerging nowadays to enable the incorporation of living cells into the biomaterials (such a mixture is referred as a bioink in the literature) to create scaffolds. However, the bioinks available for scaffold bioprinting are limited, particularly for dental tissue engineering, due to the complicated, yet compromised, printability, mechanical and biological properties simultaneously imposed on the bioinks. This paper presents our study on the development of a novel bioink from carboxymethyl chitosan (CMC) and alginate (Alg) for bioprinting scaffolds for enamel tissue…

Chondrocyte spheroid-laden microporous hydrogel-based 3D bioprinting for cartilage regeneration

International Journal of Bioprinting 2023 Article 0161

Three-dimensional (3D) bioprinting has brought new promising strategies for the regeneration of cartilage with specific shapes. In cartilage bioprinting, chondrocyte-laden hydrogels are the most commonly used bioinks. However, the dispersion of cells and the dense texture of the hydrogel in the conventional bioink may limit cell–cell/ cell–extracellular matrix (ECM) interactions, counting against cartilage regeneration and maturation. To address this issue, in this study, we developed a functional bioink for cartilage bioprinting based on chondrocyte spheroids (CSs) and microporous hydrogels, in which CSs as multicellular aggregates can provide extensive cell– cell/cell–ECM interactions to mimic the natural cartilage microenvironment, and microporous hydrogels…

Osteosarcoma progression in biomimetic matrix with different stiffness: Insights from a three-dimensional printed gelatin methacrylamide hydrogel

International Journal of Biological Macromolecules 2023 Volume 252, Article 126391

Recent studies on osteosarcoma and matrix stiffness are still mostly performed in a 2D setting, which is distinct from in vivo conditions. Therefore, the results from the 2D models may not reflect the real effect of matrix stiffness on cell phenotype. Here, we employed a 3D bioprinted osteosarcoma model, to study the effect of matrix stiffness on osteosarcoma cells. Through density adjustment of GelMA, we constructed three osteosarcoma models with distinct matrix stiffnesses of 50, 80, and 130 kPa. In this study, we found that osteosarcoma cells proliferated faster, migrated more actively, had a more stretched morphology, and a lower…

The 3D bioprinted human induced pluripotent stem cell-derived cardiac model: Toward functional and patient-derived in vitro models for disease modeling and drug screening

Bioprinting 2023 Volume 36, Article e00313

More relevant human tissue models are needed to produce reliable results when studying disease mechanisms of genetic diseases and developing or testing novel drugs in cardiac tissue engineering (TE). Three-dimensional (3D) bioprinting enables physiologically relevant positioning of the cells inside the growth matrix according to the detailed digital design. Here we combined human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) with methacrylated gelatin (GelMA) and collagen I-based bioink and 3D extrusion bioprinted a cardiac in vitro model for disease modeling and drug screening. Bioprinted constructs were characterized for their rheological properties, swelling behavior, degradation, as well as shape fidelity. The…

Efficient dual crosslinking of protein–in–polysaccharide bioink for biofabrication of cardiac tissue constructs

Biomaterials Advances 2023 Volume 152,Article 213486

Myocardial infarction (MI) is a lethal cardiac disease that causes most of the mortality across the world. MI is a consequence of plaque in the arterial walls of heart, which eventually result in occlusion and ischemia to the myocardial tissues due to inadequate nutrient and oxygen supply. As an efficient alternative to the existing treatment strategies for MI, 3D bioprinting has evolved as an advanced tissue fabrication technique where the cell–laden bioinks are printed layer–by–layer to create functional cardiac patches. In this study, a dual crosslinking strategy has been utilized towards 3D bioprinting of myocardial constructs by using a combination…

Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells

International Journal of Biological Macromolecules 2023 Volume 229, Pages 849-860

The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G’) and loss (G”) moduli and the G’ recovery capacity of the hydrogels (from 70.05 ± 3.06 % (90:10) to 82.63 ± 1.21 % (60:40)), as well as their mechanical properties, increasing the compressive stiffness…

3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability

Biomedical Materials 2023 Volume 18, Article 015004

Calcific aortic valve disease (CAVD) is a frequent cardiac pathology in the aging society. Although valvular interstitial cells (VICs) seem to play a crucial role, mechanisms of CAVD are not fully understood. Development of tissue-engineered cellular models by 3D-bioprinting may help to further investigate underlying mechanisms of CAVD. VIC were isolated from ovine aortic valves and cultured in Dulbecco’s modified Eagle’s Medium (DMEM). VIC of passages six to ten were dissolved in a hydrogel consisting of 2% alginate and 8% gelatin with a concentration of 2 × 106 VIC ml−1. Cell-free and VIC-laden hydrogels were printed with an extrusion-based 3D-bioprinter…

Enhanced osteochondral repair with hyaline cartilage formation using an extracellular matrix-inspired natural scaffold

Science Bulletin 2023 Volume 68, Issue 17, Pages 1904-1917

Osteochondral defects pose a great challenge and a satisfactory strategy for their repair has yet to be identified. In particular, poor repair could result in the generation of fibrous cartilage and subchondral bone, causing the degeneration of osteochondral tissue and eventually leading to repair failure. Herein, taking inspiration from the chemical elements inherent in the natural extracellular matrix (ECM), we proposed a novel ECM-mimicking scaffold composed of natural polysaccharides and polypeptides for osteochondral repair. By meticulously modifying natural biopolymers to form reversible guest–host and rigid covalent networks, the scaffold not only exhibited outstanding biocompatibility, cell adaptability, and biodegradability, but also…

Hydrogel Bioinks of Alginate and Curcumin-Loaded Cellulose Ester-Based Particles for the Biofabrication of Drug-Releasing Living Tissue Analogs

ACS Applied Materials & Interfaces 2023 Volume 15, Issue 34, Pages 40898-40912

3D bioprinting is a versatile technique that allows the fabrication of living tissue analogs through the layer-by-layer deposition of cell-laden biomaterials, viz. bioinks. In this work, composite alginate hydrogel-based bioinks reinforced with curcumin-loaded particles of cellulose esters (CEpCUR) and laden with human keratinocytes (HaCaT) are developed. The addition of the CEpCUR particles, with sizes of 740 ± 147 nm, improves the rheological properties of the inks, increasing their shear stress and viscosity, while preserving the recovery rate and the mechanical and viscoelastic properties of the resulting fully cross-linked hydrogels. Moreover, the presence of these particles reduces the degradation rate of…

Prototyping an additive co-fabrication workflow for architecture: utilizing cyanobacterial MICP in robotic deposition

Research Directions: Biotechnology Design 2023 Volume 1, Article E12

With the increasing need for architectural sustainability, biodesign offers a new approach to incorporating living organisms in building materials. Bacteria hold a range of biological activities that impact their environment, and which could enable the solidification of inorganic materials; this has already been seen with microbially-induced carbonate precipitation that strengthens bonds between sand particles. This paper describes the novel development of an additive co-fabrication manufacturing process, demonstrating an interdisciplinary approach of architecture and microbiology. Specifically, the activity of a biological deposition (i.e., cyanobacterial calcium carbonate precipitation) and its integration with that of a robotic deposition (i.e., a sand-based biomixture) within…

Controllable fabrication of alginate/poly-L-ornithine polyelectrolyte complex hydrogel networks as therapeutic drug and cell carriers

Acta Biomaterialia 2022 Volume 138, Pages 182-192

Polyelectrolyte complex (PEC) hydrogels are advantageous as therapeutic agent and cell carriers. However, due to the weak nature of physical crosslinking, PEC swelling and cargo burst release are easily initiated. Also, most current cell-laden PEC hydrogels are limited to fibers and microcapsules with unfavorable dimensions and structures for practical implantations. To overcome these drawbacks, alginate (Alg)/poly-L-ornithine (PLO) PEC hydrogels are fabricated into microcapsules, fibers, and bulk scaffolds to explore their feasibility as drug and cell carriers. Stable Alg/PLO microcapsules with controllable shapes are obtained through aqueous electrospraying technique, which avoids osmotic shock and prolongs the release time. Model enzyme and…

Bacterial nanocellulose-reinforced gelatin methacryloyl hydrogel enhances biomechanical property and glycosaminoglycan content of 3D-bioprinted cartilage

International Journal of Bioprinting 2023 Volume 9, Issue 1, Article 631

Tissue-engineered ear cartilage scaffold based on three-dimensional (3D) bioprinting technology presents a new strategy for ear reconstruction in individuals with microtia. Natural hydrogel is a promising material due to its excellent biocompatibility and low immunogenicity. However, insufficient mechanical property required for cartilage is one of the major issues pending to be solved. In this study, the gelatin methacryloyl (GelMA) hydrogel reinforced with bacterial nanocellulose (BNC) was developed to enhance the biomechanical properties and printability of the hydrogel. The results revealed that the addition of 0.375% BNC significantly increased the mechanical properties of the hydrogel and promoted cell migration in the…

A 3D-Bioprinted Functional Module Based on Decellularized Extracellular Matrix Bioink for Periodontal Regeneration

Advanced Science 2023 Volume 10, Issue 5, Article 2205041

Poor fiber orientation and mismatched bone–ligament interface fusion have plagued the regeneration of periodontal defects by cell-based scaffolds. A 3D bioprinted biomimetic periodontal module is designed with high architectural integrity using a methacrylate gelatin/decellularized extracellular matrix (GelMA/dECM) cell-laden bioink. The module presents favorable mechanical properties and orientation guidance by high-precision topographical cues and provides a biochemical environment conducive to regulating encapsulated cell behavior. The dECM features robust immunomodulatory activity, reducing the release of proinflammatory factors by M1 macrophages and decreasing local inflammation in Sprague Dawley rats. In a clinically relevant critical-size periodontal defect model, the bioprinted module significantly enhances the…

Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration

Tissue Engineering Part A 2022 Volume 28, Issue 3-4, Pages 161-174

Decellularized extracellular matrix hydrogel (dECM-G) has demonstrated its significant tissue-specificity, high biocompatibility, and versatile utilities in tissue engineering. However, the low mechanical stability and fast degradation are major drawbacks for its application in three-dimensional (3D) printing. Herein, we report a hybrid hydrogel system consisting of dECM-Gs and photocrosslinkable gelatin methacrylate (GelMA), which resulted in significantly improved printability and structural fidelity. These premixed hydrogels retained high bioactivity and tissue-specificity due to their containing dECM-Gs. More specifically, it was realized that the hydrogel containing dECM-G derived from porcine peripheral nerves (GelMA/pDNM-G) effectively facilitated neurite growth and Schwann cell migration from two-dimensional cultured…

The effect of the synthetic route on the biophysiochemical properties of methacrylated gelatin (GelMA) based hydrogel for development of GelMA-based bioinks for 3D bioprinting applications

Materialia 2022 Volume 25, Article 101542

Gelatin methacrylate (GelMA) is a widely used biomaterial in tissue engineering and regenerative medicine. GelMA is a chemically modified form of gelatin. Researchers have employed various methods to synthesize GelMA, such as the conventional method (Bulcke et al. 2000), the sequential method (Lee et al. 2015), and facile one-pot (Shirahama et al. 2016) methods to achieve GelMA hydrogels with a wide range of degree of functionalization or methacrylation. However, the impact of these different synthesis methods and their reac- tion parameters on GelMA hydrogels and scaffolds remains to be investigated concerning bioink formulation and 3D printing application. In this study,…

3D bioprinting optimization of human mesenchymal stromal cell laden gelatin-alginate-collagen bioink

Biomedical Materials 2022 Volume 18, Article 015016

3D bioprinting technology has gained increased attention in the regenerative medicine and tissue engineering communities over the past decade with their attempts to create functional living tissues and organs de novo. While tissues such as skin, bone, and cartilage have been successfully fabricated using 3D bioprinting, there are still many technical and process driven challenges that must be overcome before a complete tissue engineered solution is realized. Although there may never be a single adopted bioprinting process in the scientific community, adherence to optimized bioprinting protocols could reduce variability and improve precision with the goal of ensuring high quality printed…

3D-printable plant protein-enriched scaffolds for cultivated meat development

Biomaterials 2022 Volume 284, Article 121487

Cultivated meat harnesses tissue engineering (TE) concepts to create sustainable, edible muscle tissues, for addressing the rising meat product demands and their global consequences. As 3D-printing is a promising method for creating thick and complex structures, two plant-protein-enriched scaffolding compositions were primarily assessed in our work as 3D-printable platforms for bovine satellite cells (BSC) maturation. Mixtures of pea protein isolate (PPI) and soy protein isolate (SPI) with RGD-modified alginate (Alginate(RGD)) were evaluated as prefabricated mold-based and 3D-printed scaffolds for BSC cultivation, and ultimately, as potential bioinks for cellular printing. Mold-based protein enriched scaffolds exhibited elevated stability and stiffness compared to…

3D bioprinting of multilayered scaffolds with spatially differentiated ADMSCs for rotator cuff tendon-to-bone interface regeneration

Applied Materials Today 2022 Volume 27, Article 101510

Regeneration of the gradient structure of the tendon-to-bone interface is still a significant clinical challenge. This study reports a novel therapeutic method combining three-dimensional (3D) bioprinting and melt electrospinning writing techniques to regenerate a functional tendon-to-bone interface. We generated biomimetic multilayered scaffolds with 3D-bioprinted pre-differentiated autologous adipose-derived mesenchymal stem cells (ADMSC), which recapitulated compositional and cellular structures of the interface. The hydrogel-based bioinks offered high cell viability and proliferative capability for rabbit ADMSCs. The hydrogels with pre-differentiated (into tenogenic, chondrogenic, and osteogenic lineages) or undifferentiated rabbit ADMSCs were 3D-bioprinted into zonal-specific constructs to mimic the structure of the tendon-to-bone interface.…

GelMA Hydrogel Reinforced with 3D Printed PEGT/PBT Scaffolds for Supporting Epigenetically-Activated Human Bone Marrow Stromal Cells for Bone Repair

Journal of Functional Biomaterials 2022 Volume 13, Issue 2, Article 14

Epigenetic approaches using the histone deacetylase 2 and 3 inhibitor-MI192 have been reported to accelerate stem cells to form mineralised tissues. Gelatine methacryloyl (GelMA) hydrogels provide a favourable microenvironment to facilitate cell delivery and support tissue formation. However, their application for bone repair is limited due to their low mechanical strength. This study aimed to investigate a GelMA hydrogel reinforced with a 3D printed scaffold to support MI192-induced human bone marrow stromal cells (hBMSCs) for bone formation. Cell culture: The GelMA (5 wt%) hydrogel supported the proliferation of MI192-pre-treated hBMSCs. MI192-pre-treated hBMSCs within the GelMA in osteogenic culture significantly increased…

Multi-omics analysis based on 3D-bioprinted models innovates therapeutic target discovery of osteosarcoma

Bioactive Materials 2022 Volume 18, Pages 459-470

Current in vitro models for osteosarcoma investigation and drug screening, including two-dimensional (2D) cell culture and tumour spheroids (i.e. cancer stem-like cells), lack extracellular matrix (ECM). Therefore, results from traditional models may not reflect real pathological processes in genuine osteosarcoma histological structures. Here, we report a three-dimensional (3D) bioprinted osteosarcoma model (3DBPO) that contains osteosarcoma cells and shrouding ECM analogue in a 3D frame. Photo-crosslinkable bioinks composed of gelatine methacrylamide and hyaluronic acid methacrylate mimicked tumour ECM. We performed multi-omics analysis, including transcriptomics and DNA methylomics, to determine differences between the 3DBPO model and traditional models. Compared with 2D models…

Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix

Bioactive Materials 2022 Volume 16, Pages 66-81

Tissue engineering provides a promising strategy for auricular reconstruction. Although the first international clinical breakthrough of tissue-engineered auricular reconstruction has been realized based on polymer scaffolds, this approach has not been recognized as a clinically available treatment because of its unsatisfactory clinical efficacy. This is mainly since reconstruction constructs easily cause inflammation and deformation. In this study, we present a novel strategy for the development of biological auricle equivalents with precise shapes, low immunogenicity, and excellent mechanics using auricular chondrocytes and a bioactive bioink based on biomimetic microporous methacrylate-modified acellular cartilage matrix (ACMMA) with the assistance of gelatin methacrylate (GelMA),…

Three-Dimensional Bio-Printed Cardiac Patch for Sustained Delivery of Extracellular Vesicles from the Interface

Gels 2022 Volume 8, Issue 12, Article 769

Cardiac tissue engineering has emerged as a promising strategy to treat infarcted cardiac tissues by replacing the injured region with an ex vivo fabricated functional cardiac patch. Nevertheless, integration of the transplanted patch with the host tissue is still a burden, limiting its clinical application. Here, a bi-functional, 3D bio-printed cardiac patch (CP) design is proposed, composed of a cell-laden compartment at its core and an extracellular vesicle (EV)-laden compartment at its shell for better integration of the CP with the host tissue. Alginate-based bioink solutions were developed for each compartment and characterized rheologically, examined for printability and their effect…

Thiol-Rich Multifunctional Macromolecular Crosslinker for Gelatin- Norbornene-Based Bioprinting

Biomacromolecules 2021 Volume 22, Issue 6, Pages 2729-2739

Extrusion-based bioprinting is an emerging and most frequently used technique for the fabrication of cell-laden constructs. A suitable hydrogel-based bioink for cell encapsulation and protection is critical for printability, structural stability, and post-printing cell viability. The thiol–ene chemistry-based gelatin-norbornene (GelNB) hydrogels have drawn much attention as a promising substitution of gelatin methacryloyl (GelMA), owing to the fast and controllable step-growth polymerization mechanism, as well as a significant reduction in reactive oxygen species (ROS) accumulation. Herein, thiolated heparin (HepSH) was synthesized and used as a macromolecular crosslinker for GelNB-based bioprinting, so that GelNB gelation became less sensitive to the thiol/ene ratio.…

Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering

Biofabrication 2021 Volume 14, Number 1, Article 014107

In the past decade, cartilage tissue engineering has arisen as a promising therapeutic option for degenerative joint diseases, such as osteoarthritis, in the hope of restoring the structure and physiological functions. Hydrogels are promising biomaterials for developing engineered scaffolds for cartilage regeneration. However, hydrogel-delivered mesenchymal stem cells or chondrocytes could be exposed to elevated levels of reactive oxygen species (ROS) in the inflammatory microenvironment after being implanted into injured joints, which may affect their phenotype and normal functions and thereby hinder the regeneration efficacy. To attenuate ROS induced side effects, a multifunctional hydrogel with an innate anti-oxidative ability was produced…

Bioprinting of Chondrocyte Stem Cell Co-Cultures for Auricular Cartilage Regeneration

ACS Omega 2022 Volume 7, Issue 7, Pages 5908–5920

Advances in 3D bioprinting allows not only controlled deposition of cells or cell-laden hydrogels but also flexibility in creating constructs that match the anatomical features of the patient. This is especially the case for reconstructing the pinna (ear), which is a large feature of the face and made from elastic cartilage that primarily relies on diffusion for nutrient transfer. The selection of cell lines for reconstructing this cartilage becomes a crucial step in clinical translation. Chondrocytes and mesenchymal stem cells are both studied extensively in the area of cartilage regeneration as they are capable of producing cartilage in vitro. However,…

Tunable Microgel-Templated Porogel (MTP) Bioink for 3D Bioprinting Applications

Advanced Healthcare Materials 2022 Volume 11, Issue 8, Article 2200027

Micropores are essential for tissue engineering to ensure adequate mass transportation for embedded cells. Despite the considerable progress made by advanced 3D bioprinting technologies, it remains challenging to engineer micropores of 100 µm or smaller in cell-laden constructs. Here, a microgel-templated porogel (MTP) bioink platform is reported to introduce controlled microporosity in 3D bioprinted hydrogels in the presence of living cells. Templated gelatin microgels are fabricated with varied sizes (≈10, ≈45, and ≈100 µm) and mixed with photo-crosslinkable formulations to make composite MTP bioinks. The addition of microgels significantly enhances the shear-thinning and self-healing viscoelastic properties and thus the printability of bioinks…

3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink

Biofabrication 2022 Volume 14, Number 1, Article 015016

The three-dimensional (3D)-printing processes reach increasing recognition as important fabrication techniques to meet the growing demands in tissue engineering. However, it is imperative to fabricate 3D tissue units, which contain cells that have the property to be regeneratively active. In most bio-inks, a metabolic energy-providing component is missing. Here a formulation of a bio-ink is described, which is enriched with polyphosphate (polyP), a metabolic energy providing physiological polymer. The bio-ink composed of a scaffold (N,O-carboxymethyl chitosan), a hydrogel (alginate) and a cell adhesion matrix (gelatin) as well as polyP substantially increases the viability and the migration propensity of mesenchymal stem…

Hybrid Printing Using Cellulose Nanocrystals Reinforced GelMA/HAMA Hydrogels for Improved Structural Integration

Advanced Healthcare Materials 2020 Volume 9, Issue 24, Article 2001410

3D printing of soft-tissue like cytocompatible single material constructs with appropriate mechanical properties remains a challenge. Hybrid printing technology provides an attractive alternative as it combines a cell-free ink for providing mechanical support with a bioink for housing embedded cells. Several hybrid printed structures have been developed, utilizing thermoplastic polymers such as polycaprolactone as structural support. These thermoplastics demonstrated limited structural integration with the cell-laden components, and this may compromise the overall performance. In this work, a hybrid printing platform is presented using two distinct hydrogel inks that share the same photo-crosslinking chemistry to enable simple fabrication and seamless structural…

Alginate-based tissue-specific bioinks for multi-material 3D-bioprinting of pancreatic islets and blood vessels: A step towards vascularized pancreas grafts

Bioprinting 2021 Volume 24, Article e00163

Although allogeneic islet transplantation has been proposed as a therapy for type 1 diabetes, its success rate remains low. Disruption of both extracellular matrix (ECM) and dense vascular network during islets isolation are referred to as some of the main causes of their poor engraftment. Therefore, the recapitulation of the native pancreatic microenvironment and its prompt revascularization should be beneficial for long-term islet survival. In this study, we developed novel bioinks suitable for the microfluidic-assisted multi-material biofabrication of 3D porous pancreatic and vascular structures. The tissue-specific bioactivity was introduced by blending alginate either with pancreatic decellularized extracellular matrix powder (A_ECM)…

Bioprinting and In Vitro Characterization of an Eggwhite-Based Cell-Laden Patch for Endothelialized Tissue Engineering Applications

Journal of Functional Biomaterials 2021 Volume 12, Issue 3, Article: 45

Three-dimensional (3D) bioprinting is an emerging fabrication technique to create 3D constructs with living cells. Notably, bioprinting bioinks are limited due to the mechanical weakness of natural biomaterials and the low bioactivity of synthetic peers. This paper presents the development of a natural bioink from chicken eggwhite and sodium alginate for bioprinting cell-laden patches to be used in endothelialized tissue engineering applications. Eggwhite was utilized for enhanced biological properties, while sodium alginate was used to improve bioink printability. The rheological properties of bioinks with varying amounts of sodium alginate were examined with the results illustrating that 2.0–3.0% (w/v) sodium alginate…

Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment

Science Advances 2021 Volume 7, Issue 34, Article eabi9119

Many drugs show promising results in laboratory research but eventually fail clinical trials. We hypothesize that one main reason for this translational gap is that current cancer models are inadequate. Most models lack the tumor-stroma interactions, which are essential for proper representation of cancer complexed biology. Therefore, we recapitulated the tumor heterogenic microenvironment by creating fibrin glioblastoma bioink consisting of patient-derived glioblastoma cells, astrocytes, and microglia. In addition, perfusable blood vessels were created using a sacrificial bioink coated with brain pericytes and endothelial cells. We observed similar growth curves, drug response, and genetic signature of glioblastoma cells grown in our…

Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Produce Distinct Neural 3D In Vitro Models Depending on Alginate/Gellan Gum/Laminin Hydrogel Blend Properties

Advanced Healthcare Materials 2021 Volume 10, Issue 16, Article 2100131

Stable and predictive neural cell culture models are a necessary premise for many research fields. However, conventional 2D models lack 3D cell-material/-cell interactions and hence do not reflect the complexity of the in vivo situation properly. Here two alginate/gellan gum/laminin (ALG/GG/LAM) hydrogel blends are presented for the fabrication of human induced pluripotent stem cell (hiPSC)-based 3D neural models. For hydrogel embedding, hiPSC-derived neural progenitor cells (hiNPCs) are used either directly or after 3D neural pre-differentiation. It is shown that stiffness and stress relaxation of the gel blends, as well as the cell differentiation strategy influence 3D model development. The embedded…

In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering

Acta Biomaterialia 2021 Volume 123, Pages 286-297

Wounds impact millions of patients every year and represent a serious cause of morbidity and mortality worldwide, yet current treatment outcomes are far from ideal. Therapies based on delivery of multiple growth factors offer a promising approach for optimal wound management; however, their high production cost, low stability, and lack of effective delivery system limits their application in the clinic. Platelet lysate is a suitable, abundant and cost-effective source of growth factors that play an important role in the healing cascade. The aim of this current work is to develop an extrusion-based bioink consisting of platelet lysate (PL) and gelatin…

Impact of cell density on the bioprinting of gelatin methacrylate (GelMA) bioinks

Bioprinting 2021 Volume 22, Article e00131

3D printing of cell laden bioinks has the potential to recapitulate the hierarchical and spatial complexity of native tissues. However, the addition of cells can alter physical properties of printable resins, which in turn may impede or induce cellular sedimentation or affect the printability and shape fidelity of the final construct. In this study we investigated these considerations by bioprinting gelatin methacrylate (GelMA) bioinks, loaded with various concentrations of mouse fibroblast cells (L929), using extrusion-based direct-write 3D printing (EDP). The impact of various cellular concentrations on viscosity, and temperature-driven gelation of GelMA was examined with a rheometer. The effect of…

3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation

Journal of Colloid and Interface Science 2020 Volume 574, Pages 162-173

The integration of multiscale micro- and macroenvironment has been demonstrated as a critical role in designing biomimetic scaffolds for peripheral nerve tissue regeneration. While it remains a remarkable challenge for developing a biomimetic multiscale scaffold for enhancing 3D neuronal maturation and outgrowth. Herein, we present a 3D bioprinted multiscale scaffold based on a modular bioink for integrating the 3D micro- and macroenvironment of native nerve tissue. Gelatin methacryloyl (GelMA)/Chitosan Microspheres (GC-MSs) were prepared by a microfluidic approach, and the effect of these microspheres on enhancing neurite outgrowth and elongation of PC12 cells was demonstrated. The 3D multiscale composite scaffolds were…

The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique

Journal of Biomedical Materials Research Part A 2021 Volume 109, Issue 7, Pages 1209-1219

Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell-loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano-hydroxyapatite (na-HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na-HA bioscaffolds were printed using 3D…

Freeform 3D printing using a continuous viscoelastic supporting matrix

Biofabrication 2020 Volume 12, Number 3, Article 035017

Embedded bio-printing has fostered significant advances toward the fabrication of soft complex tissue-like constructs, by providing a physical support that allows the freeform shape maintenance within the prescribed spatial arrangement, even under gravity force. Current supporting materials still present major drawbacks for up-scaling embedded 3D bio-printing technology towards tissue-like constructs with clinically relevant dimensions. Herein, we report a a cost-effective and widely available supporting material for embedded bio-printing consisting on a continuous pseudo-plastic matrix of xanthan-gum (XG). This natural polisaccharide exhibits peculiar rheological properties that have enabled the rapid generation of complex volumetric 3D constructs with out-of-plane features. The freedom…

Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing

Biofabrication 2020 Volume 12, Number 4, Article 045011

Improving the printability of pure, decellularized extracellular matrix (dECM) bio-ink without altering its physiological components has been a challenge in three-dimensional (3D) cell printing. To improve the printability of the bio-ink, we first investigated the digestion process of the powdered dECM material obtained from porcine tendons. We manifested the digestion process of tendon derived dECM powders, which includes dissolution, gelatinization and solubilization. After a short dissolution period (around 10 min), we observed a ‘High viscosity slurry’ status (3 h) of the dECM precursors, i.e. the gelatinization process, followed by the solubilization processes, i.e. a ‘Medium viscosity slurry’ period (12 h)…

Bioprinting and In Vitro Characterization of an Egg White-Based Cardiac Patch for Myocardial Infarction

University of Saskatchewan 2021 Dissertation
Y. Delkash

Myocardial infarction (MI) or heart attack occurs when the bloodstream to the heart is blocked, which may destroy a part of the heart muscle (or myocardium) and form perdurable scarred tissue. The infarcted myocardial muscle nowadays has no revival treatments, and also transplantation is limited as an option. Tissue engineering has the potential to restore myocardial function after an MI by fabricating tailored tissues for treatment. For tissue engineering, three-dimensional (3D) bioprinting is a fabrication method to create 3D constructs with living cells, which would be impossible by other traditional methods. Although various biomaterials, biologically-derived or synthetic, are available, only…

3D bioprinting dermal-like structures using species-specific ulvan

Biomaterials Science 2021 Volume 9, Pages 2424-2438

3D bioprinting has been increasingly employed in skin tissue engineering for manufacturing living constructs with three-dimensional spatial precision and controlled architecture. There is however, a bottleneck in the tunability of bioinks to address specific biocompatibility challenges, functional traits and printability. Here we report on a traditional gelatin methacryloyl (GelMA) based bioink, tuned by addition of an ulvan type polysaccharide, isolated from a cultivated source of a specific Australian Ulvacean macroalgae (Ul84). Ul84 is a sulfate- and rhamnose-rich polysaccharide, resembling mammalian glycosaminoglycans that are involved in wound healing and tissue matrix structure and function. Printable bioinks were developed by addition of…

Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks

Science Advances 2020 Volume 6, Article eabc5529

A major challenge in three-dimensional (3D) bioprinting is the limited number of bioinks that fulfill the physicochemical requirements of printing while also providing a desirable environment for encapsulated cells. Here, we address this limitation by temporarily stabilizing bioinks with a complementary thermo-reversible gelatin network. This strategy enables the effective printing of biomaterials that would typically not meet printing requirements, with instrument parameters and structural output largely independent of the base biomaterial. This approach is demonstrated across a library of photocrosslinkable bioinks derived from natural and synthetic polymers, including gelatin, hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, heparin, and poly(ethylene glycol).…

Bioprinting and in vitro characterization of alginate dialdehyde–gelatin hydrogel bio-ink

Bio-Design and Manufacturing 2020 Volume 3, Pages 48–59

Cell-laden cardiac patches have recently been emerging to renew cellular sources for myocardial infarction (MI, commonly know as a heart attack) repair. However, the fabrication of cell-laden patches with porous structure remains challenging due to the limitations of currently available hydrogels and existing processing techniques. The present study utilized a bioprinting technique to fabricate hydrogel patches and characterize them in terms of printability, mechanical and biological properties. Cell-laden hydrogel (or bio-ink) was formulated from alginate dialdehyde (ADA) and gelatin (GEL) to improve the printability, degradability as well as bioactivity. Five groups of hydrogel compositions were designed to investigate the influence…

Fiber engraving for bioink bioprinting within 3D printed tissue engineering scaffolds

Bioprinting 2020 Volume 18, Article e00076

In this work, we describe a new 3D printing methodology for the fabrication of multimaterial scaffolds involving the combination of thermoplastic extrusion and low temperature extrusion of bioinks. A fiber engraving technique was used to create a groove on the surface of a thermoplastic printed fiber using a commercial 3D printer and a low viscosity bioink was deposited into this groove. In contrast to traditional extrusion bioinks that rely on increased viscosity to prevent lateral spreading, this groove creates a defined space for bioink deposition. By physically constraining bioink spreading, a broader range of viscosities can be used. As proof-of-concept,…

3D hybrid printing platform for auricular cartilage reconstruction

Biomedical Physics & Engineering Express 2020 Volume 6, Number 3, Article 035003

As scaffolds approach dimensions that are of clinical relevance, mechanical integrity and distribution becomes an important factor to the overall success of the implant. Hydrogels often lack the structural integrity and mechanical properties for use in vivo or handling. The inclusion of a structural support during the printing process, referred to as hybrid printing, allows the implant to retain structure and protect cells during maturation without needing to compromise its biological performance. In this study, scaffolds for the purpose of auricular cartilage reconstruction were evaluated via a hybrid printing approach using methacrylated Gelatin (GelMA) and Hyaluronic acid (HAMA) as the…

Void‐Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion

Advanced Functional Materials 2020 Volume 30, Issue 1, Article 1908349

Two major challenges of 3D bioprinting are the retention of structural fidelity and efficient endothelialization for tissue vascularization. Both of these issues are addressed by introducing a versatile 3D bioprinting strategy, in which a templating bioink is deposited layer‐by‐layer alongside a matrix bioink to establish void‐free multimaterial structures. After crosslinking the matrix phase, the templating phase is sacrificed to create a well‐defined 3D network of interconnected tubular channels. This void‐free 3D printing (VF‐3DP) approach circumvents the traditional concerns of structural collapse, deformation, and oxygen inhibition, moreover, it can be readily used to print materials that are widely considered “unprintable.” By…

Mechanical and finite element evaluation of a bioprinted scaffold following recellularization in a rat subcutaneous model

Journal of the Mechanical Behavior of Biomedical Materials 2020 Volume 102, 103519

Tissue engineered heart valves (TEHV) provide several advantages over currently available aortic heart valve replacements. Bioprinting provides a patient-specific means of developing a TEHV scaffold from imaging data, and the capability to embed the patient’s own cells within the scaffold. In this work we investigated the remodeling capacity of a collagen-based bio-ink by implanting bioprinted disks in a rat subcutaneous model for 2, 4 and 12 weeks and evaluating the mechanical response using biaxial testing and subsequent finite element (FE) modeling. Samples explanted after 2 and 4 weeks showed inferior mechanical properties compared to native tissues while 12 week explants…

Cell Bioprinting: The 3D-Bioplotter™ Case

Materials 2019 Volume 12, Issue 23, Article 4005

The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with…

3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance

Biomaterials 2019 Volume 222, Article 119423

Vascularization is a crucial process during the growth and development of bone 1, yet it remains one of the main challenges in the reconstruction of large bone defects. The use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. Both cell types secrete specific growth factors that are mutually beneficial, and studies suggested that cell-cell communication and paracrine secretion could be affected by a number of factors. However, little is known about the effect of cell patterning and the distance between cell populations on…

In vivo remodeling of a 3D-Bioprinted tissue engineered heart valve scaffold

Bioprinting 2019 Volume 16, Article e00059

Objective To evaluate the recellularization potential of a bioprinted aortic heart valve scaffold printed with highly concentrated Type I collagen hydrogel (Lifeink® 200) and MSCs. Materials and methods A suspension of rat mesenchymal stem cells (MSCs) was mixed with Lifeink® 200 and was 3D-printed into gelatin support gel to produce disk scaffolds which were subsequently implanted subcutaneously in Sprague-Dawley rats for 2, 4, 8, and 12 weeks. The biomechanical properties of the scaffolds were evaluated by uniaxial tensile testing and cell infiltration and inflammation assessed via immunohistochemistry (IHC) and histological staining. Results There was an average decrease in both UTS…

Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions

Journal of Materials Chemistry B 2019 Volume 7, Issue 29, Pages 4538-4551

3D bioprinting techniques have been attracting attention for tissue scaffold fabrication in nerve tissue engineering applications. However, due to the inherent complexity of nerve tissues, bioprinting scaffolds that can appropriately promote the regeneration of damaged tissues is still challenging. This paper presents our study on bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions including RGD modified alginate, hyaluronic acid and fibrin, with a focus on investigating the printability of hydrogel compositions and characterizing the functions of printed scaffolds for potential use in nerve tissue regeneration. We assessed the rheological properties of hydrogel precursors via temperature, time and shear rate sweeps,…

Printability and Cell Viability in Bioprinting Alginate Dialdehyde- Gelatin Scaffolds

ACS Biomaterials Science & Engineering 2019 Volume 5, Issue 6, Pages 2976-2987

Three-dimensional (3D) bioprinting is a promising technique used to fabricate scaffolds from hydrogels with living cells. However, the printability of hydrogels in bioprinting has not been adequately studied. The aim of this study was to quantitatively characterize the printability and cell viability of alginate dialdehyde (ADA)-gelatin (Gel) hydrogels for bioprinting. ADA-Gel hydrogels of various concentrations were synthesized and characterized using Fourier transform infrared spectroscopy, along with rheological tests for measuring storage and loss moduli. Scaffolds (with an area of 11 × 11 mm) of 1, 2, and 13 layers were fabricated from ADA-Gel hydrogels using a 3D-bioplotter under printing conditions…

Quantitative ultrasound imaging of cell-laden hydrogels and printed constructs

Acta Biomaterialia 2019 Volume 91, Pages 173-185

In the present work we have revisited the application of quantitative ultrasound imaging (QUI) to cellular hydrogels, by using the reference phantom method (RPM) in combination with a local attenuation compensation algorithm. The investigated biological samples consisted of cell-laden collagen hydrogels with PC12 neural cells. These cell-laden hydrogels were used to calibrate the integrated backscattering coefficient (IBC) as a function of cell density, which was then used to generate parametric images of local cell density. The image resolution used for QUI and its impact on the relative IBC error was also investigated. Another important contribution of our work was the…

Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications

Journal of the Mechanical Behavior of Biomedical Materials 2019 Volume 93, Pages 183-193

Low-concentration hydrogels have favorable properties for many cell functions in tissue engineering but are considerably limited from a scaffold fabrication point of view due to poor three-dimensional (3D) printability. Here, we developed an indirect-bioprinting process for alginate scaffolds and characterized the potential of these scaffolds for nerve tissue engineering applications. The indirect-bioprinting process involves (1) printing a sacrificial framework from gelatin, (2) impregnating the framework with low-concentration alginate, and (3) removing the gelatin framework by an incubation process, thus forming low-concentration alginate scaffolds. The scaffolds were characterized by compression testing, swelling, degradation, and morphological and biological assessment of incorporated or…

Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments

Bioprinting 2019 Volume 14, Article e00045

Peripheral nerve tissue requires appropriate biochemical and physical cues to guide the regeneration process after injury. Bioprinted peptide-conjugated sodium alginate (PCSA) scaffolds have the potential to provide physical and biochemical cues simultaneously. Such scaffolds need characterisation in terms of printability, mechanical stability, and biological performance to refine and improve application in nerve tissue regeneration. In this study, it was hypothesized that 3D scaffold printed with low concentrated multiple PCSA precursor would be supportive for axon outgrowth. Therefore, a 2% (w/v) alginate precursor was conjugated with either arginine-glycine-aspartate (RGD) or tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptides, or a mixture of RGD and YIGSR (1:2)…

Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting

Biofabrication 2019 Volume 11, Issue 1, Article 015015

Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we test the hypothesis that hydroxyapatite (HAP) stimulates chondrocytes to secrete the characteristic matrix of calcified cartilage. Sodium citrate (SC) was added as a dispersant of HAP within alginate (ALG), and homogeneous dispersal of HAP within ALG hydrogel was confirmed using sedimentation tests, electron microscopy, and energy dispersive spectroscopy. To examine the biological performance of ALG/HAP composites, chondrocyte survival…

Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels

Acta Biomaterialia 2019 Volume 85, Pages 84-93

Three-dimensional (3D) printing of decellularized extracellular matrix (dECM) hydrogels is a promising technique for regenerative engineering. 3D-printing enables the reproducible and precise patterning of multiple cells and biomaterials in 3D, while dECM has high organ-specific bioactivity. However, dECM hydrogels often display poor printability on their own and necessitate additives or support materials to enable true 3D structures. In this study, we used a sacrificial material, 3D-printed Pluronic F-127, to serve as a platform into which dECM hydrogel can be incorporated to create specifically designed structures made entirely up of dECM. The effects of 3D dECM are studied in the context…

ZEB2, a master regulator of the epithelial-mesenchymal transition, mediates trophoblast differentiation

MHR: Basic science of reproductive medicine 2018 Volume 25, Issue 2, Pages 61–75

STUDY QUESTION Does the upregulation of the zinc finger E-box binding homeobox 2 (ZEB2) transcription factor in human trophoblast cells lead to alterations in gene expression consistent with an epithelial-mesenchymal transition (EMT) and a consequent increase in invasiveness? SUMMARY ANSWER Overexpression of ZEB2 results in an epithelial-mesenchymal shift in gene expression accompanied by a substantial increase in invasive capacity of human trophoblast cells.

Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink

Journal of Biomaterials Applications 2018 Volume 33, Issue 5, Pages 609-618

Gelatin methacryloyl is a promising material in tissue engineering and has been widely studied in three-dimensional bioprinting. Although gelatin methacryloyl possesses excellent biocompatibility and tunable mechanical properties, its poor printability/processability has hindered its further applications. In this study, we report a reversible physical crosslinking strategy for precise deposition of human chondrocyte-laden gelatin methacryloyl bioink at low concentration without any sacrificial material by using extrusive three-dimensional bioprinting. The precise printing temperature was determined by the rheological properties of gelatin methacryloyl with temperature. Ten percent (w/v) gelatin methacryloyl was chosen as the printing formula due to highest biocompatibility in three-dimensional cell cultures…

A Bioprinted Cardiac Patch Composed of Cardiac-Specific Extracellular Matrix and Progenitor Cells for Heart Repair

Advanced Healthcare Materials 2018 Volume 7, Issue 23, Article 1800672

Congenital heart defects are present in 8 of 1000 newborns and palliative surgical therapy has increased survival. Despite improved outcomes, many children develop reduced cardiac function and heart failure requiring transplantation. Human cardiac progenitor cell (hCPC) therapy has potential to repair the pediatric myocardium through release of reparative factors, but therapy suffers from limited hCPC retention and functionality. Decellularized cardiac extracellular matrix hydrogel (cECM) improves heart function in animals, and human trials are ongoing. In the present study, a 3D‐bioprinted patch containing cECM for delivery of pediatric hCPCs is developed. Cardiac patches are printed with bioinks composed of cECM, hCPCs,…

Tyrosinase-doped bioink for 3D bioprinting of living skin constructs

Biomedical Materials 2018 Volume 13, Number 3, Article Number 035008

Three-dimensional bioprinting is an emerging technology for fabricating living 3D constructs, and it has shown great promise in tissue engineering. Bioinks are scaffold materials mixed with cells used by 3D bioprinting to form a required cell-laden structure. In this paper, a novel bioink made of gelatin methacrylamide (GelMA) and collagen (Col) doped with tyrosinase (Ty) is presented for the 3D bioprinting of living skin tissues. Ty has the dual function of being an essential bioactive compound in the skin regeneration process and also as an enzyme to facilitate the crosslink of Col and GelMA. Further, enzyme crosslinking together with photocrosslinking…

Characterization of Cell Damage and Proliferative Ability during and after Bioprinting

ACS Biomaterials Science & Engineering 2018 Volume 4, Issue 11, Pages 3906–3918

When a biomaterial solution containing living cells is subject to bioprinting, the cells experience process-induced stresses, including shear and extensional stresses. These process-induced stresses breach cell membranes and can lead to cell damage, thus reducing cell viability and functioning within the printed constructs. Studies have been conducted to determine the influence of shear stress on cell damage; however, the effect of extensional stress has been typically ignored in the literature until the recently collected evidence of its importance. This paper presents a novel method to characterize and quantify the cell damage caused by both shear and extensional stresses in bioprinting.…

Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering

Acta Biomaterialia 2018 Volume 74, Pages 131-142

Bioengineered adipose tissues have gained increased interest as a promising alternative to autologous tissue flaps and synthetic adipose fillers for soft tissue augmentation and defect reconstruction in clinic. Although many scaffolding materials and biofabrication methods have been investigated for adipose tissue engineering in the last decades, there are still challenges to recapitulate the appropriate adipose tissue microenvironment, maintain volume stability, and induce vascularization to achieve long-term function and integration. In the present research, we fabricated cryogels consisting of methacrylated gelatin, methacrylated hyaluronic acid, and 4arm poly(ethylene glycol) acrylate (PEG-4A) by using cryopolymerization. The cryogels were repeatedly injectable and stretchable, and…

3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications

Biofabrication 2018 Volume 10, Number 3, Article 035014

Three-dimensional bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve regeneration, yet remain unachievable. This paper presents our study on bioprinting Schwann cell-encapsulated scaffolds using composite hydrogels of alginate, fibrin, hyaluronic acid, and/or RGD peptide, for nerve tissue engineering applications. For the preparation of composite hydrogels, suitable hydrogel combinations were identified and prepared by adjusting the concentration of fibrin based on the morphological spreading of Schwann cells. In bioprinting, the…

Label free process monitoring of 3D bioprinted engineered constructs via dielectric impedance spectroscopy

Biofabrication 2018 Volume 10, Article 035012

Biofabrication processes can affect biological quality attributes of encapsulated cells within constructs. Currently, assessment of the fabricated constructs is performed offline by subjecting the constructs to destructive assays that require staining and sectioning. This drawback limits the translation of biofabrication processes to industrial practice. In this work, we investigate the dielectric response of viable cells encapsulated in bioprinted 3D hydrogel constructs to an applied alternating electric field as a label-free non-destructive monitoring approach. The relationship between β-dispersion parameters (permittivity change—Δε, Cole–Cole slope factor—α, critical polarization frequency—f c ) over the frequency spectrum and critical cellular quality attributes are investigated. Results…

Engineering Human Neural Tissue by 3D Bioprinting

Biomaterials for Tissue Engineering 2018 Pages 129-138

Bioprinting provides an opportunity to produce three-dimensional (3D) tissues for biomedical research and translational drug discovery, toxicology, and tissue replacement. Here we describe a method for fabricating human neural tissue by 3D printing human neural stem cells with a bioink, and subsequent gelation of the bioink for cell encapsulation, support, and differentiation to functional neurons and supporting neuroglia. The bioink uniquely comprises the polysaccharides alginate, water-soluble carboxymethyl-chitosan, and agarose. Importantly, the method could be adapted to fabricate neural and nonneural tissues from other cell types, with the potential to be applied for both research and clinical product development.

Effects of tunable, 3D-bioprinted hydrogels on human brown adipocyte behavior and metabolic function

Acta Biomaterialia 2018 Volume 71, Pages 486-495

Obesity and its related health complications cause billions of dollars in healthcare costs annually in the United States, and there are yet to be safe and long-lasting anti-obesity approaches. Using brown adipose tissue (BAT) is a promising approach, as it uses fats for energy expenditure. However, the effect of the microenvironment on human thermogenic brown adipogenesis and how to generate clinically relevant sized and functioning BAT are still unknown. In our current study, we evaluated the effects of endothelial growth medium exposure on brown adipogenesis of human brown adipose progenitors (BAP). We found that pre-exposing BAP to angiogenic factors promoted…

3D Bioprinting of Breast Cancer Models for Drug Resistance Study

ACS Biomaterials Science & Engineering 2018 Volume 4, Issue 12, Pages 4401-4411

Adipose-derived mesenchymal stem/stromal cells (ADMSC) are one of the major stromal cells in the breast cancer microenvironment that promote cancer progression. Previous studies on the effects of ADMSC on breast cancer metastasis and drug resistance, using two-dimensional (2D) cultures, remained inconclusive. In the present study, we compared cocultured ADMSC and human epidermal receptor 2 positive breast primary breast cancer cells (21PT) in 2D and three-dimensional (3D) cultures and then examined their response to doxorubicin (DOX). We examined 3D bioprinted constructs with breast cancer cells in the middle and ADMSC in the edge region, which were made by using dual hydrogel-based…

Imaging stem cell distribution, growth, migration, and differentiation in 3-D scaffolds for bone tissue engineering using mesoscopic fluorescence tomography

Biotechnology and Bioengineering 2017 Volume 115, Issue 1, Pages 257-265

Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2∼3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration and…

UV-assisted 3D bioprinting of nano-reinforced hybrid cardiac patch for myocardial tissue engineering

Tissue Engineering Part C: Methods 2017 Volume: 24 Issue 2, Pages 74-88

Biofabrication of cell supportive cardiac patches that can be directly implanted on myocardial infarct is a potential solution for myocardial infarction repair. Ideally, cardiac patches should be able to mimic myocardium extracellular matrix for rapid integration with the host tissue, raising the need to develop cardiac constructs with complex features. In particular, cardiac patches should be electrically conductive, mechanically robust and elastic, biologically active and pre-vascularized.. In this study, we aim to biofabricate a nano-reinforced hybrid cardiac patch laden with human coronary artery endothelial cells (HCAECs) with improved electrical, mechanical and biological behavior. A safe UV exposure time with insignificant…

Repair of Tympanic Membrane Perforations with Customized, Bioprinted Ear Grafts Using Chinchilla Models

Tissue Engineering Part A 2017 Volume: 24 Issue 5-6, Pages 527-535

The goal of this work is to develop an innovative method that combines bioprinting and endoscopic imaging to repair tympanic membrane perforations (TMPs). TMPs are a serious health issue because they can lead to both conductive hearing loss and repeated otitis media. TMPs occur in 3 to 5% of cases after ear tube placement as well as in cases of acute otitis media (the second most common infection in pediatrics), chronic otitis media with or without cholesteatoma, or as a result of barotrauma to the ear. About 55,000 tympanoplasties, the surgery performed to reconstruct TMPs, are performed every year and…

Bioprinting pattern-dependent electrical/mechanical behavior of cardiac alginate implants: characterization and ex-vivo phase-contrast microtomography assessment

Tissue Engineering Part C: Methods 2017 Volume 23, Issue 9, Pages 548-564

Three-dimensional (3D)-bioprinting techniques may be used to modulate electrical/mechanical properties and porosity of hydrogel constructs for fabrication of suitable cardiac implants. Notably, characterization of these properties after implantation remains a challenge, raising the need for the development of novel quantitative imaging techniques for monitoring hydrogel implant behavior in-situ. This study aims to (i) assess the influence of hydrogel bioprinting patterns on electrical/mechanical behavior of cardiac implants based on a 3D-printing technique and (ii) investigate the potential of synchrotron X-ray phase contrast computed tomography (PCI-CT) for estimating elastic modulus/impedance/porosity and microstructural features of 3D-printed cardiac implants in-situ via an ex-vivo study.…

[Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro]

Nan Fang Yi Ke Da Xue Xue Bao (Journal of Southern Medical University) 2017 Volume 37, Issue 5, Pages 668-672

OBJECTIVE: To evaluate the cytotoxicity of gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting in human dental pulp cells (HDPCs) and compare the cell adhesion and proliferation of the cells seeded in the biomaterial using two different methods. METHODS: HDPCs isolated by tissue block culture and enzyme digestion were cultured and passaged. Gelatin/alginate hydrogel scaffolds were printed using a bioplotter, and the cytotoxicity of the aqueous extracts of the scaffold material was tested in the third passage of HDPCs using cell counting kit-8. Scanning electron microscopy and trypan blue were used to assess the adhesion and proliferation of the cells seeded…

Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells

RSC Advances 2017 Volume 7, Pages 29312-29320

Reconstruction of complex, craniofacial bone defects often requires autogenous vascularized bone grafts, and still remains a challenge today. In order to address this issue, we isolated the stromal vascular fraction (SVF) from adipose tissues and maintained the phenotypes and the growth of endothelial lineage cells within SVF derived cells (SVFC) by incorporating an endothelial cell medium. We 3D bioprinted SVFC within our hydrogel bioinks and conditioned the constructs in either normoxia or hypoxia. We found that short-term hypoxic conditioning promoted vascularization-related gene expression, whereas long-term hypoxia impaired cell viability and vascularization. 3D bioprinted bone constructs composed of polycaprolactone/hydroxyapatite (PCL/HAp) and…

3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation

Advanced Healthcare Materials 2017 Volume 6, Issue 17, Article 1700175

The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine, including individualized, patient-specific stem cell-based treatments. There are, however, few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids. Bioprinting iPSCs with advanced biomaterials promises to augment efforts to develop 3D tissues, ideally comprising direct-write printing of cells for encapsulation, proliferation, and differentiation. Here, such a method, employing a clinically amenable polysaccharide-based bioink, is described as the first example of bioprinting human…

Traditional invasive and synchrotron-based non-invasive assessments of 3D-printed hybrid cartilage constructs

Tissue Engineering Part C: Methods 2017 Volume 23, Issue 3, Pages 156-168

Three-dimensional (3D)-printed constructs made of polycaprolactone (PCL) and chondrocyte-impregnated alginate hydrogel (hybrid cartilage constructs) mimic the biphasic nature of articular cartilage, offering promise for cartilage tissue engineering (CTE) applications. However, the regulatory pathway for medical device development requires validation of such constructs through in vitro bench tests and in vivo preclinical examinations premarket approval. Furthermore, non-invasive imaging techniques are required for effective evaluation of the progress of these cartilage constructs, especially when implanted in animal models or human subjects. However, characterization of the individual components of the hybrid cartilage constructs and their associated time-dependent structural changes by currently available non-invasive…

Development of a 3D Printed, Bioengineered Placenta Model to Evaluate the Role of Trophoblast Migration in Preeclampsia

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 10, Pages 1817–1826

Preeclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality. Current research suggests that the impaired trophoblastic invasion of maternal spiral arteries contributes significantly to the development of PE. However, the pathobiology of PE remains poorly understood, and there is a lack of treatment options largely due to ineffective experimental models. Utilizing the capability of bioprinting and shear wave elastography, we developed a 3D, bioengineered placenta model (BPM) to study and quantify cell migration. Through BPM, we evaluated the effect of epidermal growth factor (EGF) on the migratory behavior of trophoblast and human mesenchymal stem cells. Our…

3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 7, Pages 1200–1210

Hydrogels are particularly attractive as scaffolding materials for cartilage tissue engineering because their high water content closely mimics the native extracellular matrix (ECM). Hydrogels can also provide a three-dimensional (3D) microenvironment for homogeneously suspended cells that retains their rounded morphology and thus facilitates chondrogenesis in cartilage tissue engineering. However, fabricating hydrogel scaffolds or cell-laden hydrogel constructs with a predesigned external shape and internal structure that does not collapse remains challenging because of the low viscosity and high water content of hydrogel precursors. Here, we present a study on the fabrication of (cell-laden) alginate hydrogel constructs using a 3D bioplotting system…

Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering

Journal of Synchrotron Radiation 2016 Volume 23, Issue 3, Pages 802-812

Synchrotron radiation inline phase-contrast imaging combined with computed tomography (SR-inline-PCI-CT) offers great potential for non-invasive characterization and three-dimensional visualization of fine features in weakly absorbing materials and tissues. For cartilage tissue engineering, the biomaterials and any associated cartilage extracellular matrix (ECM) that is secreted over time are difficult to image using conventional absorption-based imaging techniques. For example, three-dimensional printed polycaprolactone (PCL)/alginate/cell hybrid constructs have low, but different, refractive indices and thicknesses. This paper presents a study on the optimization and utilization of inline-PCI-CT for visualizing the components of three-dimensional printed PCL/alginate/cell hybrid constructs for cartilage tissue engineering. First, histological analysis…

[Osteogenesis of human adipose-derived mesenchymal stem cells-biomaterial mixture in vivo after 3D bio-printing]

Journal of Peking University. Health Sciences 2016 Volume 48, Issue 1, Pages 45-50

To construct human adipose-derived mesenchymal stem cells (hASCs)-biomaterial mixture 3D bio-printing body and detect its osteogenesis in vivo, and to establish a guideline of osteogenesis in vivo by use of 3D bio-printing technology preliminarily.P4 hASCs were used as seed cells, whose osteogenic potential in vitro was tested by alkaline phosphatase (ALP) staining and alizarin red staining after 14 d of osteogenic induction. The cells were added into 20 g/L sodium alginate and 80 g/L gelatin mixture (cell density was 1×10(6)/mL), and the cell-sodium alginate-gelatin mixture was printed by Bioplotter 3D bio-printer (Envision company, Germany), in which the cells’survival rate was…

3D-Bioprinting of Polylactic Acid (PLA) Nanofibers-Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 10, Pages 1732–1742

Bioinks play a central role in 3D-bioprinting by providing the supporting environment within which encapsulated cells can endure the stresses encountered during the digitally-driven fabrication process, and continue to mature, proliferate, and eventually form extracellular matrix (ECM). In order to be most effective, it is important that bioprinted constructs recapitulate the native tissue milieu as closely as possible. As such, musculoskeletal soft tissue constructs can benefit from bioinks that mimic their nanofibrous matrix constitution, which is also critical to their function. This study focuses on the development and proof-of-concept assessment of a fibrous bioink composed of alginate hydrogel, polylactic acid…

Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells

Advanced Healthcare Materials 2016 Volume 5, Issue 12, Pages 1429–1438

Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium…

Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering

Tissue Engineering Part C: Methods 2016 Volume 22, Issue 3, Pages 173-188

Three-dimensional (3D) bioprinting of hybrid constructs is a promising biofabrication method for cartilage tissue engineering because a synthetic polymer framework and cell-impregnated hydrogel provide structural and biological features of cartilage, respectively. During bioprinting, impregnated cells may be subjected to high temperatures (caused by the adjacent melted polymer) and process-induced mechanical forces, potentially compromising cell function. This study addresses these biofabrication issues, evaluating the heat distribution of printed polycaprolactone (PCL) strands and the rheological property and structural stability of alginate hydrogels at various temperatures and concentrations. The biocompatibility of parameters from these studies was tested by culturing 3D hybrid constructs bioprinted…

Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds

Journal of Biomaterials Science, Polymer Edition 2015 Volume 26, Issue 7, Pages 433-445

Recently alginate-based tissue repair scaffolds fabricated using 3D printing techniques have been extensively examined for use in tissue engineering applications. However, their physical and mechanical properties are unfavorable for many tissue engineering applications because these properties are poorly controlled during the fabrication process. Some improvement of alginate gel properties can be realized by addition of hyaluronic acid (HA), and this may also improve the ability of cells to interact with the gel. Here, we report improvement of the physical properties of alginate–HA gel scaffolds by the addition of the polycation polyethyleneimine (PEI) during the fabrication process in order to stabilize…

A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels

Advanced Materials 2015 Volume 27, Issue 9, Pages 1607–1614

A multimaterial bio-ink method using polyethylene glycol crosslinking is presented for expanding the biomaterial palette required for 3D bioprinting of more mimetic and customizable tissue and organ constructs. Lightly crosslinked, soft hydrogels are produced from precursor solutions of various materials and 3D printed. Rheological and biological characterizations are presented, and the promise of this new bio-ink synthesis strategy is discussed.

Bioplotting Alginate/Hyaluronic Acid Hydrogel Scaffolds with Structural Integrity and Preserved Schwann Cell Viability

3D Printing and Additive Manufacturing 2014 Volume 1, Issue 4, Pages 194-203

Bioplotting is an emerging freeform scaffold fabrication technique useful for creating artificial tissue scaffolds containing living cells. Simultaneous maintenance of scaffold structural integrity and cell viability is a challenging task. In this article, we present strategies developed to bioplot alginate-based three-dimensional tissue scaffolds containing hyaluronic acid and living Schwann cells for potential use in peripheral nerve tissue engineering. The fabrication platform, upon which the scaffold is created, was coated with the polycation polyethylenimine to immobilize the first layer of the scaffold on the platform. Each layer was then dispensed into a bath containing calcium chloride to cross-link the alginate, polyvinyl…

Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

Beilstein Journal of Nanotechnology 2014 Volume 5, Pages 610–621

Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA) and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA). Evidence has been presented that during the initial phase…

Effect of Bioglass on Growth and Biomineralization of SaOS-2 Cells in Hydrogel after 3D Cell Bioprinting

PloS One 2014 Volume 9, Issue 11, Article e112497

We investigated the effect of bioglass (bioactive glass) on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP), administered as polyP•Ca2+-complex, or silica, or as biosilica that had been enzymatically prepared from ortho-silicate by silicatein. These hydrogels, together with SaOS-2 cells, were bioprinted to computer-designed scaffolds. The results revealed that bioglass (nano)particles, with a size of 55 nm and a molar ratio of SiO2∶CaO∶P2O5 of 55∶40∶5, did not affect the growth of the encapsulated cells. If silica, biosilica, or polyP•Ca2+-complex is co-added to the cell-containing alginate/gelatin…

Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells

Biomaterials 2014 Volume 35, Issue 31, Pages 8810–8819

Sodium alginate hydrogel, stabilized with gelatin, is a suitable, biologically inert matrix that can be used for encapsulating and 3D bioprinting of bone-related SaOS-2 cells. However, the cells, embedded in this matrix, remain in a non-proliferating state. Here we show that addition of an overlay onto the bioprinted alginate/gelatine/SaOS-2 cell scaffold, consisting of agarose and the calcium salt of polyphosphate [polyP·Ca2+-complex], resulted in a marked increase in cell proliferation. In the presence of 100 μm polyP·Ca2+-complex, the cells proliferate with a generation time of approximately 47–55 h. In addition, the hardness of the alginate/gelatin hydrogel substantially increases in the presence…

The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability

Biomaterials 2014 Volume 35, Issue 1, Pages 49–62

In the present study, we report on the combined efforts of material chemistry, engineering and biology as a systemic approach for the fabrication of high viability 3D printed macroporous gelatin methacrylamide constructs. First, we propose the use and optimization of VA-086 as a photo-initiator with enhanced biocompatibility compared to the conventional Irgacure 2959. Second, a parametric study on the printing of gelatins was performed in order to characterize and compare construct architectures. Hereby, the influence of the hydrogel building block concentration, the printing temperature, the printing pressure, the printing speed, and the cell density were analyzed in depth. As a…

Development of Schwann Cell-Encapsulated Alginate Scaffolds for the Repair of Peripheral Nerve Injury

CMBES Proceedings 35 2012

Nerve conduits for peripheral nerve repair have progressed from simple silicon tubes to complex engineered scaffolds. Recent advances in scaffold fabrication have enabled the incorporation of neurotrophins, extracellular matrix components and various cells into scaffolds for enhanced biologic properties. Bioplotting is one of the emerging methods, where the scaffold material, in form of a solution, is dispensed from a needle, layer by layer forming a three-dimensional structure. It enables the use of a wide range of materials, ranging from synthetic polymers (like polycaprolactone, polyglycolic acid, etc.) to naturally occurring polymers like alginate, chitosan, etc. Notably, the use of hydrogels gives…

Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing

Tissue Engineering Part A 2008 Volume: 14 Issue 1, Pages 127-133

Organ or tissue printing, a novel approach in tissue engineering, creates layered, cell-laden hydrogel scaffolds with a defined three-dimensional (3D) structure and organized cell placement. In applying the concept of tissue printing for the development of vascularized bone grafts, the primary focus lies on combining endothelial progenitors and bone marrow stromal cells (BMSCs). Here we characterize the applicability of 3D fiber deposition with a plotting device, Bioplotter, for the fabrication of spatially organized, cell-laden hydrogel constructs. The viability of printed BMSCs was studied in time, in several hydrogels, and extruded from different needle diameters. Our findings indicate that cells survive…